Solving the integrated process planning and scheduling problem using an enhanced constraint programming-based approach

约束规划 数学优化 计算机科学 调度(生产过程) 水准点(测量) 约束满足 约束(计算机辅助设计) 作业车间调度 灵活性(工程) 数学 地铁列车时刻表 随机规划 人工智能 操作系统 地理 几何学 统计 概率逻辑 大地测量学
作者
Ganquan Shi,Zhouwang Yang,Yang XU,Yuchen Quan
出处
期刊:International Journal of Production Research [Informa]
卷期号:60 (18): 5505-5522 被引量:6
标识
DOI:10.1080/00207543.2021.1963496
摘要

Due to various factors of flexibility introduced into manufacturing systems, researchers have gradually shifted their focus to the integrated process planning and scheduling (IPPS) problem to improve productivity. The previous literature rarely associates IPPS with constraint programming, even though constraint programming has achieved success in the scheduling field. Furthermore, existing approaches are usually customized to certain types of IPPS problems and cannot handle the general problem. In this paper, with a view to obtaining the optimal AND/OR graph automatically, a depth first search generating algorithm is designed to convert the type-1 IPPS problem into our approach's standard input format. Moreover, we propose an approach based on enhanced constraint programming to cope with the general problem, employing advanced schemes to enhance the constraint propagation and improve the search efficiency. Our approach is implemented on ORTOOLS, and its superiority is verified by testing on 15 benchmarks with 50 instances. Experimental results indicate that 41 instances are solved optimally, among which the optimality of the solutions for 20 instances is newly confirmed, and the solutions of six instances are improved. Our approach is the first method to reach the overall optimum in the most influential benchmark with 24 instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学道给学道的求助进行了留言
1秒前
1秒前
1秒前
1秒前
1秒前
damie完成签到 ,获得积分10
2秒前
迪丽热巴发布了新的文献求助10
2秒前
勤奋的缘郡完成签到,获得积分20
3秒前
3秒前
4秒前
在水一方应助小王同学采纳,获得10
4秒前
zhangzhen完成签到,获得积分10
4秒前
Vendetta发布了新的文献求助10
5秒前
5秒前
Syk_发布了新的文献求助10
5秒前
6秒前
Orange应助未晞采纳,获得10
6秒前
6秒前
黑夜做着白日梦应助VDC采纳,获得10
7秒前
70完成签到,获得积分10
7秒前
zhangzhen发布了新的文献求助10
8秒前
8秒前
xzf1996发布了新的文献求助10
8秒前
10秒前
Akim应助Syk_采纳,获得10
10秒前
完美世界应助qichen采纳,获得10
10秒前
加油发布了新的文献求助10
11秒前
lucky完成签到,获得积分10
12秒前
高兴微笑发布了新的文献求助10
12秒前
13秒前
13秒前
王铭元发布了新的文献求助30
14秒前
一只鱼er发布了新的文献求助10
14秒前
Vendetta完成签到,获得积分10
15秒前
愉快的枕头完成签到,获得积分10
16秒前
笨笨行云完成签到,获得积分10
16秒前
贪玩的誉发布了新的文献求助50
17秒前
richael完成签到,获得积分10
17秒前
上官若男应助木目耶耶耶采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469715
求助须知:如何正确求助?哪些是违规求助? 3062911
关于积分的说明 9080378
捐赠科研通 2753084
什么是DOI,文献DOI怎么找? 1510742
邀请新用户注册赠送积分活动 697987
科研通“疑难数据库(出版商)”最低求助积分说明 697975