A Nomological Network of Knowledge Management System Use: Antecedents and Consequences

实施 工作态度 工作满意度 工作表现 工作分析 工作设计 知识管理 业务 规则网络 计算机科学 应用心理学 心理学 社会心理学 营销 服务(商务) 程序设计语言
作者
Xiaojun Zhang,Viswanath Venkatesh
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
链接
摘要

A key objective of knowledge management system (KMS) implementations is to facilitate job outcomes, such as job performance and job satisfaction. Prior KMS research indicates many KMS implementations have failed to achieve their intended job outcomes, such as job performance and job satisfaction, and one important reason for failure could be that employees do not know how to use a KMS to enhance job outcomes. Given that research on this topic is scant and the findings inconsistent, this paper sought to develop a better understanding of the topic. Specifically, we examine how employees can use a small number of KMS features to get a majority of their job tasks done. Limited research has used a systematic approach to identify these features, examined drivers of using these features, and impacts of the use of such features on job outcomes. Based on a literature review, we first identified several KMS features. Then, these features were examined using a qualitative study among 35 employees in a large organization in the finance industry to identify the key KMS features that could contribute positively to job outcomes. We then developed a nomological network of KMS feature use. Leveraging social network theory, we present peer support ties in general, and help-seeking ties and help-providing ties in particular, as key drivers of the use of these features and job outcomes. We also present various competing hypotheses for the effects from peer support to KMS feature use, KMS feature use to job outcomes, and peer support to job outcomes. We conducted a quantitative study (n = 1,441) in the same organization (noted above) to validate our model. Results indicated that our model was largely supported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhhr发布了新的文献求助10
1秒前
1秒前
刻苦觅荷发布了新的文献求助10
1秒前
2秒前
比蓝色更深完成签到,获得积分10
2秒前
无辜不言发布了新的文献求助20
3秒前
感动芷卉完成签到 ,获得积分10
3秒前
3秒前
大根队长完成签到,获得积分10
4秒前
LOVE0077完成签到,获得积分10
4秒前
4秒前
dfghjkl完成签到 ,获得积分10
5秒前
evee完成签到 ,获得积分10
5秒前
Cyber_relic发布了新的文献求助10
5秒前
6秒前
肥鹏完成签到,获得积分10
6秒前
6秒前
帝蒼完成签到,获得积分10
7秒前
7秒前
汉堡包应助迷路迎南采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
Van关注了科研通微信公众号
9秒前
10秒前
10秒前
10秒前
研友_LJQ4o8完成签到,获得积分10
11秒前
11秒前
xiaosee给xiaosee的求助进行了留言
11秒前
12秒前
Auston_zhong应助一点采纳,获得10
13秒前
邓代容发布了新的文献求助10
13秒前
13秒前
黄强发布了新的文献求助10
13秒前
AlvinCZY发布了新的文献求助10
13秒前
星007完成签到,获得积分10
13秒前
深情安青应助Cyber_relic采纳,获得10
14秒前
shhoing应助ertredffg采纳,获得30
14秒前
zhhr完成签到,获得积分10
14秒前
14秒前
粗犷的沛容应助大根队长采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771