材料科学
水溶液
硒化锌
硒化物
吸附
铋
插层(化学)
无机化学
化学工程
阴极
化学
硒
有机化学
物理化学
冶金
光电子学
工程类
作者
Peng Lei,Xiaochuan Ren,Zhaofeng Liang,Yuanhe Sun,Yuanxin Zhao,Jiaqian Zhang,Zeying Yao,Zhiguo Ren,Li Zhao,Juan Wang,Beien Zhu,Yi Gao,Wen Wen,Yaobo Huang,Xiaolong Li,Renzhong Tai,Ke Yang,Daming Zhu
标识
DOI:10.1016/j.ensm.2021.07.015
摘要
Rechargeable aqueous zinc-ion batteries present low-cost, safe, and environmentally-friendly battery technology but suffer from the limited choice of cathode materials because of the sluggish kinetics of divalent zinc-ion associated with the high adsorption and migration energy barrier. Herein, a reversible zinc/bismuth selenide mild aqueous system was demonstrated for the first time, where bismuth selenide nanoplate cathode delivers a high specific capacity of 263.2 mA h g−1 at 0.1 A g−1 and robust rate capability of 100.6 mA h g−1 even at 10 A g−1 with long-term lifespan (82.3% retention after 1000 cycles). Benefiting from the layered structure and nanoplate morphology of the bismuth selenide cathode, surface-dominated ion storage is verified by a quantitative kinetics analysis, particularly at high current rates. Notably, unlike conventional batteries with only the reversible intercalation of alkali ions into metal chalcogenides, zinc/bismuth selenide aqueous batteries possess a sequential proton and zinc-ion insertion/extraction process, identified by in situ synchrotron radiation-based X-ray diffraction. Density functional theory analysis approves the low adsorption energy and preferential embedding process of protons, and that can further optimize Zn2+ adsorption and migration abilities in bismuth selenide nanoplate, which is mainly responsible for the excellent performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI