Comparison of image reconstruction methods for structured illumination microscopy

混叠 计算机科学 人工智能 噪音(视频) 光学 显微镜 光学切片 计算机视觉 信噪比(成像) 图像分辨率 图像处理 分辨率(逻辑) 算法 模式识别(心理学) 图像(数学) 物理 滤波器(信号处理)
作者
Tomáš Lukeš,Guy M. Hagen,Pavel Křížek,Zdeněk Švindrych,Karel Fliegel,Miloš Klíma
出处
期刊:Proceedings of SPIE 被引量:27
标识
DOI:10.1117/12.2052621
摘要

Structured illumination microscopy (SIM) is a recent microscopy technique that enables one to go beyond the diffraction limit using patterned illumination. The high frequency information is encoded through aliasing into the observed image. By acquiring multiple images with different illumination patterns aliased components can be separated and a highresolution image reconstructed. Here we investigate image processing methods that perform the task of high-resolution image reconstruction, namely square-law detection, scaled subtraction, super-resolution SIM (SR-SIM), and Bayesian estimation. The optical sectioning and lateral resolution improvement abilities of these algorithms were tested under various noise level conditions on simulated data and on fluorescence microscopy images of a pollen grain test sample and of a cultured cell stained for the actin cytoskeleton. In order to compare the performance of the algorithms, the following objective criteria were evaluated: Signal to Noise Ratio (SNR), Signal to Background Ratio (SBR), circular average of the power spectral density and the S3 sharpness index. The results show that SR-SIM and Bayesian estimation combine illumination patterned images more effectively and provide better lateral resolution in exchange for more complex image processing. SR-SIM requires one to precisely shift the separated spectral components to their proper positions in reciprocal space. High noise levels in the raw data can cause inaccuracies in the shifts of the spectral components which degrade the super-resolved image. Bayesian estimation has proven to be more robust to changes in noise level and illumination pattern frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LIM关闭了LIM文献求助
1秒前
1秒前
Li完成签到,获得积分20
4秒前
sun发布了新的文献求助10
6秒前
6秒前
优雅柏柳发布了新的文献求助10
7秒前
zz发布了新的文献求助10
8秒前
Lucas应助活力契采纳,获得10
8秒前
Li发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助江蹇采纳,获得10
11秒前
机灵柚子发布了新的文献求助10
11秒前
12秒前
慕苡发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
16秒前
17秒前
ekko发布了新的文献求助10
18秒前
根瘤君发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
DD完成签到,获得积分10
20秒前
释怀发布了新的文献求助10
22秒前
活力契发布了新的文献求助10
22秒前
fu发布了新的文献求助10
22秒前
pingping发布了新的文献求助10
23秒前
穆承羲完成签到 ,获得积分10
24秒前
24秒前
confident完成签到 ,获得积分10
24秒前
思源应助安静海露采纳,获得10
25秒前
健忘的雨安完成签到,获得积分10
25秒前
慕苡完成签到,获得积分10
26秒前
伯赏人杰发布了新的文献求助10
29秒前
猪猪hero应助对对碰采纳,获得10
30秒前
小马甲应助胖虎不胖采纳,获得10
31秒前
31秒前
根瘤君完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021