Comparison of image reconstruction methods for structured illumination microscopy

混叠 计算机科学 人工智能 噪音(视频) 光学 显微镜 光学切片 计算机视觉 信噪比(成像) 图像分辨率 图像处理 分辨率(逻辑) 算法 模式识别(心理学) 图像(数学) 物理 滤波器(信号处理)
作者
Tomáš Lukeš,Guy M. Hagen,Pavel Křížek,Zdeněk Švindrych,Karel Fliegel,Miloš Klíma
出处
期刊:Proceedings of SPIE 被引量:27
标识
DOI:10.1117/12.2052621
摘要

Structured illumination microscopy (SIM) is a recent microscopy technique that enables one to go beyond the diffraction limit using patterned illumination. The high frequency information is encoded through aliasing into the observed image. By acquiring multiple images with different illumination patterns aliased components can be separated and a highresolution image reconstructed. Here we investigate image processing methods that perform the task of high-resolution image reconstruction, namely square-law detection, scaled subtraction, super-resolution SIM (SR-SIM), and Bayesian estimation. The optical sectioning and lateral resolution improvement abilities of these algorithms were tested under various noise level conditions on simulated data and on fluorescence microscopy images of a pollen grain test sample and of a cultured cell stained for the actin cytoskeleton. In order to compare the performance of the algorithms, the following objective criteria were evaluated: Signal to Noise Ratio (SNR), Signal to Background Ratio (SBR), circular average of the power spectral density and the S3 sharpness index. The results show that SR-SIM and Bayesian estimation combine illumination patterned images more effectively and provide better lateral resolution in exchange for more complex image processing. SR-SIM requires one to precisely shift the separated spectral components to their proper positions in reciprocal space. High noise levels in the raw data can cause inaccuracies in the shifts of the spectral components which degrade the super-resolved image. Bayesian estimation has proven to be more robust to changes in noise level and illumination pattern frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vella完成签到,获得积分10
刚刚
pinge发布了新的文献求助10
1秒前
1秒前
BBBBB完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
灵巧白安发布了新的文献求助10
4秒前
CipherSage应助十三采纳,获得10
4秒前
沐风发布了新的文献求助100
4秒前
4秒前
5秒前
123完成签到,获得积分10
6秒前
oyc完成签到,获得积分10
6秒前
7秒前
瘪良科研发布了新的文献求助10
7秒前
饭团0814发布了新的文献求助10
7秒前
友好寄真完成签到,获得积分20
7秒前
8秒前
CipherSage应助单薄的采萱采纳,获得10
8秒前
Wang-Implad完成签到,获得积分10
8秒前
汉堡包应助cheese采纳,获得10
9秒前
天使小五哥完成签到,获得积分0
10秒前
WTS完成签到,获得积分10
10秒前
和谐听莲发布了新的文献求助50
10秒前
书呆子叶发布了新的文献求助20
12秒前
Elsa完成签到,获得积分10
12秒前
CodeCraft应助勤恳的金鑫采纳,获得10
12秒前
明天不打球完成签到,获得积分20
12秒前
呆萌的土豆完成签到,获得积分10
13秒前
haha发布了新的文献求助10
13秒前
13秒前
勾栏听曲发布了新的文献求助10
14秒前
14秒前
傅宛白发布了新的文献求助10
14秒前
mumu完成签到,获得积分10
14秒前
遊雲发布了新的文献求助10
14秒前
猫咪老师应助斯文谷秋采纳,获得30
14秒前
执着的灵阳完成签到,获得积分10
16秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003