跳跃式监视
计算机科学
非完整系统
卡尔曼滤波器
线性化
非线性系统
滤波器(信号处理)
噪音(视频)
集合(抽象数据类型)
移动机器人
扩展卡尔曼滤波器
计算
过滤问题
控制理论(社会学)
机器人
算法
过程(计算)
数学优化
人工智能
数学
计算机视觉
图像(数学)
物理
操作系统
量子力学
程序设计语言
控制(管理)
出处
期刊:IEEE transactions on systems, man, and cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2005-03-01
卷期号:35 (2): 189-197
被引量:129
标识
DOI:10.1109/tsmca.2005.843383
摘要
We propose a novel methodology for reliable localization of an autonomous mobile robot navigating in an unstructured environment using noisy absolute measurements from its exteroceptive sensors. A new deterministic filtering technique is introduced, which is based on the recursive computation of a bounding set that is guaranteed to contain the true state of the system, despite process and observation noise, and taking into explicit consideration uncertainties due to the linearization error. The proposed set-valued nonlinear filter relies on a two-step prediction-correction structure, with each step requiring the solution of a particular convex optimization problem. The method is illustrated by simulation on a localization problem for a nonholonomic rover, and it is compared with the standard extended Kalman filter approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI