生物
基因表达谱
转录组
计算生物学
细胞
电池类型
基因表达
基因组学
细胞生物学
基因
基因组
遗传学
作者
Evan Z. Macosko,Anindita Basu,Rahul Satija,James Nemesh,Karthik Shekhar,Melissa Goldman,Itay Tirosh,Allison R. Bialas,Nolan Kamitaki,Emily M. Martersteck,John J. Trombetta,David A. Weitz,Joshua R. Sanes,Alex K. Shalek,Aviv Regev,Steven A. McCarroll
出处
期刊:Cell
[Elsevier]
日期:2015-05-01
卷期号:161 (5): 1202-1214
被引量:5935
标识
DOI:10.1016/j.cell.2015.05.002
摘要
Summary
Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. Video Abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI