Tensor-Based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography

正规化(语言学) 矩阵范数 数学 计算机断层摄影术 规范(哲学) 断层摄影术 数学优化 算法 计算机科学 应用数学 人工智能 物理 光学 放射科 医学 特征向量 量子力学 政治学 法学
作者
Oğuz Semerci,Ning Hao,Misha E. Kilmer,Eric L. Miller
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1678-1693 被引量:346
标识
DOI:10.1109/tip.2014.2305840
摘要

The development of energy selective, photon counting X-ray detectors allows for a wide range of new possibilities in the area of computed tomographic image formation. Under the assumption of perfect energy resolution, here we propose a tensor-based iterative algorithm that simultaneously reconstructs the X-ray attenuation distribution for each energy. We use a multi-linear image model rather than a more standard "stacked vector" representation in order to develop novel tensor-based regularizers. Specifically, we model the multi-spectral unknown as a 3-way tensor where the first two dimensions are space and the third dimension is energy. This approach allows for the design of tensor nuclear norm regularizers, which like its two dimensional counterpart, is a convex function of the multi-spectral unknown. The solution to the resulting convex optimization problem is obtained using an alternating direction method of multipliers (ADMM) approach. Simulation results shows that the generalized tensor nuclear norm can be used as a stand alone regularization technique for the energy selective (spectral) computed tomography (CT) problem and when combined with total variation regularization it enhances the regularization capabilities especially at low energy images where the effects of noise are most prominent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
852应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
twostand应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得30
刚刚
Lucas应助zhogwe采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Mark应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
小程同学发布了新的文献求助10
1秒前
Mark应助科研通管家采纳,获得10
1秒前
城南花已开完成签到,获得积分10
2秒前
2秒前
赘婿应助给我一支西地兰采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
z123完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300