高同型半胱氨酸血症
未折叠蛋白反应
内分泌学
肝损伤
脂肪变性
内科学
甜菜碱
内质网
酒精性肝病
同型半胱氨酸
脂肪肝
细胞凋亡
切碎
化学
生物
分子生物学
生物化学
医学
肝硬化
作者
Cheng Ji,Neil Kaplowitz
标识
DOI:10.1016/s0016-5085(03)00276-2
摘要
Alcohol-induced hyperhomocysteinemia has been reported in rats and humans. Hyperhomocysteinemia has been associated with endoplasmic reticulum (ER) stress leading to the activation of ER-dependent apoptosis or up-regulation of lipid synthesis. This novel ER stress mechanism of alcoholic liver injury was studied in the model of intragastric alcohol-fed mice.Effects of alcohol on gene expression were analyzed using cDNA microarrays, RT-PCR, and Western blots over a period of 6 weeks. Liver injury was examined by histologic staining and TUNEL.We observed fatty liver, increased hepatic necroinflammation and apoptosis, and hyperhomocysteinemia. Of 1176 toxicology-related genes, glucose-regulated proteins (GRP-78 and -94), growth arrest/DNA damage-inducible protein 153 (CHOP/GADD153), and caspase-12 indicative of an ER stress response were among the alcohol-responsive genes. Sterol regulatory element binding protein (SREBP-1) and HMG-CoA reductase also were enhanced with alcohol administration. RT-PCR and selective Western blots confirmed the alcohol-induced expression of ER stress-related apoptosis and lipid synthesis genes. Addition of 0.5% and maximal 1.5% betaine to the alcohol diet reduced the elevated level of plasma homocysteine by 54% and more than 80% accompanied by a decrease in hepatic lipids and ER stress response. Betaine did not attenuate the ethanol-induced increase in tumor necrosis factor alpha or CD14 mRNA.The results strongly suggest that alcohol may modulate both apoptotic and fat synthetic gene expression through homocysteine-induced ER stress in chronic alcoholic mouse liver and that correction of hyperhomocysteinemia by betaine or other approaches may be useful to prevent alcoholic liver disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI