拟合优度
测量不变性
计量经济学
统计
结构方程建模
心理学
数学
验证性因素分析
作者
Gordon W. Cheung,Roger B. Rensvold
标识
DOI:10.1207/s15328007sem0902_5
摘要
Measurement invariance is usually tested using Multigroup Confirmatory Factor Analysis, which examines the change in the goodness-of-fit index (GFI) when cross-group constraints are imposed on a measurement model. Although many studies have examined the properties of GFI as indicators of overall model fit for single-group data, there have been none to date that examine how GFIs change when between-group constraints are added to a measurement model. The lack of a consensus about what constitutes significant GFI differences places limits on measurement invariance testing. We examine 20 GFIs based on the minimum fit function. A simulation under the two-group situation was used to examine changes in the GFIs (ΔGFIs) when invariance constraints were added. Based on the results, we recommend using Δcomparative fit index, ΔGamma hat, and ΔMcDonald's Noncentrality Index to evaluate measurement invariance. These three ΔGFIs are independent of both model complexity and sample size, and are not correlated with the overall fit measures. We propose critical values of these ΔGFIs that indicate measurement invariance.
科研通智能强力驱动
Strongly Powered by AbleSci AI