超氧化物歧化酶
溃疡性结肠炎
结肠炎
一氧化氮
髓过氧化物酶
磺胺吡啶
谷胱甘肽
谷胱甘肽过氧化物酶
一氧化氮合酶
葡萄籽提取物
药理学
化学
抗氧化剂
胃肠病学
医学
内科学
炎症
生物化学
病理
酶
替代医学
疾病
作者
Yan‐Hong Wang,Xiaolai Yang,Li Wang,Mingxia Cui,Yongqing Cai,Xiaoli Li,Yongjie Wu
摘要
The aim of the present study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seed (GSPE) in the treatment of recurrent ulcerative colitis (UC) in rats. To induce recurrent colitis, rats were instilled with 2,4,6-trinitrobenzenesulfonic acid (TNBS) (80 mg/kg) into the colon through the cannula in the first induced phase, and then the rats were instilled a second time with TNBS (30 mg/kg) into the colon on the sixteenth day after the first induction UC. Rats were intragastrically administered GSPE (200 mg/kg) per day for 7 days after twice-induced colitis by TNBS. Sulfasalazine at 500 mg/kg was used as a positive control drug. Rats were killed 7 days after GSPE treatment. The colonic injury and inflammation were assessed by macroscopic and macroscopic damage scores, colon weight/length ratio (mg/cm), and myeloperoxidase activity. Then, superoxide dismutase, glutathione peroxidase, inducible nitric oxide synthase (iNOS) activities, and the levels of malonyldialdehyde, glutathione, and nitric oxide in serum and colonic tissues were measured. Compared with the recurrent UC group, GSPE treatment facilitated recovery of pathologic changes in the colon after induction of recurrent colitis, as demonstrated by reduced colonic weight/length ratio and macroscopic and microscopic damage scores. The myeloperoxidase and iNOS activities with malonyldialdehyde and nitric oxide levels in serum and colon tissues of colitis rats were significantly decreased in the GSPE group compared with those in the recurrent UC group. In addition, GSPE treatment was associated with notably increased superoxide dismutase, glutathione peroxidase activities, and glutathione levels of colon tissues and serum of rats. GSPE exerted a protective effect on recurrent colitis in rats by modifying the inflammatory response, inhibiting inflammatory cell infiltration and antioxidation damage, promoting damaged tissue repair to improve colonic oxidative stress, and inhibiting colonic iNOS activity to reduce the production of nitric oxide.
科研通智能强力驱动
Strongly Powered by AbleSci AI