A novel transformer-based network with attention mechanism for automatic pavement crack detection

卷积神经网络 分割 计算机科学 编码器 变压器 可视化 人工智能 特征提取 工程类 电压 操作系统 电气工程
作者
Feng Guo,Jian Liu,Chengshun Lv,Huayang Yu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:391: 131852-131852 被引量:41
标识
DOI:10.1016/j.conbuildmat.2023.131852
摘要

Currently, there is an urgent need to utilize automatic approaches to detecting pavement cracks for roadway maintenance. Taking advantage of the development of convolutional neural networks (CNNs), previous studies put more effort into the detection of the pavement crack with local feature extraction using consecutive convolutional operations. However, it results in the loss of detailed information, making CNNs fail to accurately inspect the long and complicated cracks under noisy conditions, which are common on the pavement surface, negatively impacting detection accuracy. In order to cope with this issue, this study proposes a Transformer-based semantic segmentation network that unifies the Swin Transformer as the Encoder and the UperNet with the attention module as the Decoder for robust and accurate pixel-level pavement crack detection. Leveraging the hierarchical architecture of Swin Transformer, the global and long-range semantic features of the pavement crack are learned for improved segmentation accuracy. With the assistance of the attention module, the Decoder can retrieve more details of the crack information, presenting accurate detection results on the fine and tiny pavement cracks. To validate the superiority of the proposed network, we have trained and tested six semantic segmentation models on three public pavement crack datasets. Compared to other models, the proposed model achieves the best performance on visualization and evaluation metrics of mean F1(mF1) and mean Recall (mRecall) with 0-pixel tolerance. It paves the way for future applications of automatic pavement crack detection using Transformed-based networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CNS完成签到,获得积分10
3秒前
3秒前
Dan发布了新的文献求助10
4秒前
小冰棍完成签到,获得积分10
5秒前
小蘑菇应助白白采纳,获得10
5秒前
年轻的若颜完成签到,获得积分10
8秒前
9秒前
zjh完成签到,获得积分10
9秒前
Moshiqi发布了新的文献求助10
12秒前
今天放假了吗完成签到,获得积分10
13秒前
13秒前
CodeCraft应助渣渣XM采纳,获得10
14秒前
LWJJNU发布了新的文献求助10
16秒前
17秒前
blue驳回了华仔应助
17秒前
开心夜云完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
淡淡文轩发布了新的文献求助10
19秒前
文静千凡发布了新的文献求助10
19秒前
20秒前
情怀应助科学界的泰斗采纳,获得15
21秒前
22秒前
22秒前
yan完成签到,获得积分10
22秒前
AoGuo完成签到,获得积分10
23秒前
ruby发布了新的文献求助10
23秒前
25秒前
25秒前
汉堡包应助轻松的山河采纳,获得10
26秒前
小滕发布了新的文献求助10
28秒前
29秒前
ljs完成签到,获得积分10
29秒前
morgenlefay发布了新的文献求助10
30秒前
34秒前
35秒前
35秒前
阿白完成签到 ,获得积分10
39秒前
渣渣XM发布了新的文献求助10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309