Accuracy of Artificial Intelligence in Estimating Best-Corrected Visual Acuity From Fundus Photographs in Eyes With Diabetic Macular Edema

医学 眼底(子宫) 眼科 视力 糖尿病性视网膜病变 阿柏西普 验光服务 黄斑水肿 析因分析 外科 糖尿病 贝伐单抗 内科学 内分泌学 化疗
作者
William Paul,Philippe Burlina,Rohita Mocharla,Neil Joshi,Zhuolin Li,Sophie Z. Gu,Onnisa Nanegrungsunk,Kira Lin,Susan B. Bressler,Cindy X. Cai,Jun Kong,T. Y. Alvin Liu,Hadi Moini,Weiming Du,Fouad Amer,Karen Chu,Robert Vitti,Farshid Sepehrband,Neil M. Bressler
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:141 (7): 677-677 被引量:7
标识
DOI:10.1001/jamaophthalmol.2023.2271
摘要

Importance Best-corrected visual acuity (BCVA) is a measure used to manage diabetic macular edema (DME), sometimes suggesting development of DME or consideration of initiating, repeating, withholding, or resuming treatment with anti–vascular endothelial growth factor. Using artificial intelligence (AI) to estimate BCVA from fundus images could help clinicians manage DME by reducing the personnel needed for refraction, the time presently required for assessing BCVA, or even the number of office visits if imaged remotely. Objective To evaluate the potential application of AI techniques for estimating BCVA from fundus photographs with and without ancillary information. Design, Setting, and Participants Deidentified color fundus images taken after dilation were used post hoc to train AI systems to perform regression from image to BCVA and to evaluate resultant estimation errors. Participants were patients enrolled in the VISTA randomized clinical trial through 148 weeks wherein the study eye was treated with aflibercept or laser. The data from study participants included macular images, clinical information, and BCVA scores by trained examiners following protocol refraction and VA measurement on Early Treatment Diabetic Retinopathy Study (ETDRS) charts. Main Outcomes Primary outcome was regression evaluated by mean absolute error (MAE); the secondary outcome included percentage of predictions within 10 letters, computed over the entire cohort as well as over subsets categorized by baseline BCVA, determined from baseline through the 148-week visit. Results Analysis included 7185 macular color fundus images of the study and fellow eyes from 459 participants. Overall, the mean (SD) age was 62.2 (9.8) years, and 250 (54.5%) were male. The baseline BCVA score for the study eyes ranged from 73 to 24 letters (approximate Snellen equivalent 20/40 to 20/320). Using ResNet50 architecture, the MAE for the testing set (n = 641 images) was 9.66 (95% CI, 9.05-10.28); 33% of the values (95% CI, 30%-37%) were within 0 to 5 letters and 28% (95% CI, 25%-32%) within 6 to 10 letters. For BCVA of 100 letters or less but more than 80 letters (20/10 to 20/25, n = 161) and 80 letters or less but more than 55 letters (20/32 to 20/80, n = 309), the MAE was 8.84 letters (95% CI, 7.88-9.81) and 7.91 letters (95% CI, 7.28-8.53), respectively. Conclusions and Relevance This investigation suggests AI can estimate BCVA directly from fundus photographs in patients with DME, without refraction or subjective visual acuity measurements, often within 1 to 2 lines on an ETDRS chart, supporting this AI concept if additional improvements in estimates can be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伞兵龙发布了新的文献求助10
1秒前
RC_Wang应助科研小民工采纳,获得10
1秒前
sanben完成签到,获得积分10
1秒前
1秒前
_蝴蝶小姐完成签到,获得积分10
2秒前
诗轩发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
迟大猫应助乐乱采纳,获得10
4秒前
万能图书馆应助派大星采纳,获得10
5秒前
FashionBoy应助娜行采纳,获得10
6秒前
6秒前
传奇3应助后知后觉采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助Chem is try采纳,获得10
7秒前
8秒前
a方舟发布了新的文献求助10
8秒前
寒冷书竹发布了新的文献求助10
8秒前
8秒前
hhh发布了新的文献求助10
8秒前
顾矜应助富婆嘉嘉子采纳,获得10
8秒前
8秒前
8秒前
9秒前
江风海韵完成签到,获得积分10
9秒前
火星上的从雪完成签到,获得积分10
9秒前
在水一方应助kai采纳,获得10
9秒前
打打应助留胡子的青柏采纳,获得10
10秒前
10秒前
zhanghw发布了新的文献求助10
10秒前
Frank完成签到,获得积分10
10秒前
桐桐应助小喵采纳,获得10
10秒前
香蕉觅云应助执笔客采纳,获得10
10秒前
light完成签到 ,获得积分10
10秒前
你仔细听完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672