PanDa Game: Optimized Privacy-Preserving Publishing of Individual-Level Pandemic Data Based on a Game Theoretic Model

斯塔克伯格竞赛 计算机科学 数据发布 出版 可用性 博弈论 数据建模 数据共享 大流行 信息隐私 序贯博弈 2019年冠状病毒病(COVID-19) 互联网隐私 疾病 医学 数据库 人机交互 经济 数理经济学 政治学 法学 微观经济学 替代医学 病理 传染病(医学专业)
作者
Abinitha Gourabathina,Zhiyu Wan,J Thomas Brown,Chao Yan,Bradley Malin
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 808-817 被引量:1
标识
DOI:10.1109/tnb.2023.3284092
摘要

Sharing individual-level pandemic data is essential for accelerating the understanding of a disease. For example, COVID-19 data have been widely collected to support public health surveillance and research. In the United States, these data are typically de-identified before publication to protect the privacy of the corresponding individuals. However, current data publishing approaches for this type of data, such as those adopted by the U.S. Centers for Disease Control and Prevention (CDC), have not flexed over time to account for the dynamic nature of infection rates. Thus, the policies generated by these strategies have the potential to both raise privacy risks or overprotect the data and impair the data utility (or usability). To optimize the tradeoff between privacy risk and data utility, we introduce a game theoretic model that adaptively generates policies for the publication of individual-level COVID-19 data according to infection dynamics. We model the data publishing process as a two-player Stackelberg game between a data publisher and a data recipient and then search for the best strategy for the publisher. In this game, we consider 1) average performance of predicting future case counts; and 2) mutual information between the original data and the released data. We use COVID-19 case data from Vanderbilt University Medical Center from March 2020 to December 2021 to demonstrate the effectiveness of the new model. The results indicate that the game theoretic model outperforms all state-of-the-art baseline approaches, including those adopted by CDC, while maintaining low privacy risk. We further perform an extensive sensitivity analyses to show that our findings are robust to order-of-magnitude parameter fluctuations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
twinkle完成签到,获得积分20
刚刚
Mina完成签到,获得积分10
1秒前
1秒前
2秒前
尤寄风发布了新的文献求助10
3秒前
5秒前
仰泳的鱼发布了新的文献求助10
6秒前
dingxuexuan发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助星星采纳,获得10
8秒前
8秒前
永毅完成签到 ,获得积分10
8秒前
9秒前
10秒前
cdercder应助XudongHou采纳,获得30
10秒前
安然发布了新的文献求助10
10秒前
在水一方应助姽稚采纳,获得10
12秒前
Iwan应助感谢大哥的帮助采纳,获得10
14秒前
14秒前
金金发布了新的文献求助10
15秒前
RaeSu发布了新的文献求助10
16秒前
16秒前
虚幻的夜天完成签到 ,获得积分10
17秒前
善学以致用应助Liu采纳,获得10
18秒前
18秒前
HappyDog完成签到,获得积分10
19秒前
星星发布了新的文献求助10
19秒前
星际牛仔完成签到 ,获得积分10
20秒前
20秒前
梅子酒发布了新的文献求助10
20秒前
科研通AI5应助stszd采纳,获得10
21秒前
YSY完成签到,获得积分10
21秒前
cancan发布了新的文献求助10
22秒前
totito发布了新的文献求助10
23秒前
wfl完成签到,获得积分10
23秒前
归雁发布了新的文献求助10
25秒前
简单的期待应助YSY采纳,获得10
26秒前
RaeSu完成签到,获得积分10
28秒前
科研通AI5应助夕赣采纳,获得10
28秒前
29秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475940
求助须知:如何正确求助?哪些是违规求助? 3067572
关于积分的说明 9104917
捐赠科研通 2759160
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204