已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent design of display space layout based on two-stage deep learning network

计算机科学 能见度 可用性 匹配(统计) 人工智能 空格(标点符号) 深度学习 机器学习 计算机工程 人机交互 数学 统计 操作系统 光学 物理
作者
Jiaxing Liu,Yongchao Zhu,Yin Cui
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
卷期号:23 (6): 3347-3362
标识
DOI:10.3233/jcm-226912
摘要

In an age of big data and information overload, recommendation systems have evolved rapidly. Throughout the traditional design of interior spaces, the specialised nature of the work and the high rate of human involvement has led to high costs. With the continuous development of artificial intelligence technology, it provides a favourable environment for reducing the development cost of the system. This study proposes a two-stage modelling scheme based on deep learning networks for the intelligent design of display space layouts, divided into two parts: matching and layout, which greatly improves design efficiency. The research results show that through comparison tests, its prediction accuracy reaches more than 80%, which can well meet the matching requirements of household products. The training number of Epochs is between 15 and 30, its training curve tends to saturate and the best accuracy can reach 100%, while the running time of the hybrid algorithm proposed in this study is only 20.716 s, which is significantly better compared with other algorithms. The proposed hybrid algorithm has a running time of only 20.716 s, which is significantly better than other algorithms. The approach innovatively combines deep learning technology with computer-aided design (CAD), enabling designers to automatically generate display space layouts with good visibility and usability based on complex design constraints. This study presents an innovative application of the research methodology by combining quantitative and qualitative methods to analyse the data. The application of both methods provides a more comprehensive understanding of the problem under study and provides insight into the key factors that influence the results. The findings of this study can provide useful insights for policy makers and practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYQ完成签到,获得积分10
1秒前
zznzn发布了新的文献求助10
2秒前
美满的菠萝完成签到,获得积分10
6秒前
大东东完成签到,获得积分10
6秒前
dormraider完成签到,获得积分10
12秒前
12秒前
克泷完成签到 ,获得积分10
12秒前
坦率依珊关注了科研通微信公众号
13秒前
YifanWang应助大东东采纳,获得10
13秒前
duanhuiyuan应助一颗小星星采纳,获得10
14秒前
迷路的沛芹完成签到 ,获得积分10
16秒前
香蕉觅云应助liuzengzhang666采纳,获得10
20秒前
20秒前
22秒前
Brain完成签到 ,获得积分10
23秒前
23秒前
万能图书馆应助等待紫菱采纳,获得10
23秒前
23秒前
zznzn发布了新的文献求助10
25秒前
穿裤子的云应助abner采纳,获得200
25秒前
Meyako完成签到 ,获得积分10
25秒前
26秒前
细心的如天完成签到 ,获得积分10
27秒前
斯文败类应助洁净的锦程采纳,获得10
29秒前
lena发布了新的文献求助10
29秒前
绝情汤姆发布了新的文献求助10
31秒前
安息香发布了新的文献求助10
32秒前
34秒前
冷酷丹翠完成签到 ,获得积分10
36秒前
40秒前
44秒前
48秒前
西莫完成签到,获得积分10
48秒前
Leo完成签到,获得积分10
49秒前
毛豆应助chenjun7080采纳,获得10
52秒前
Fantastic发布了新的文献求助10
53秒前
领导范儿应助liuzengzhang666采纳,获得10
55秒前
57秒前
Leo发布了新的文献求助10
58秒前
duanhuiyuan应助一颗小星星采纳,获得10
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455552
求助须知:如何正确求助?哪些是违规求助? 3050804
关于积分的说明 9022690
捐赠科研通 2739358
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694565
邀请新用户注册赠送积分活动 693387