Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm

信号转导 受体 细胞生物学 生物 细胞信号 配体(生物化学) 细胞表面受体 生物化学
作者
M. Florencia Sánchez,Robert Tampé
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:48 (2): 156-171 被引量:18
标识
DOI:10.1016/j.tibs.2022.08.002
摘要

Receptor clustering in living cells is being increasingly recognized not only as an essential facet of cell signaling but also as a physical modulator of physiological responses. Liquid–liquid phase separation as the main mechanism for cluster formation indicates that, in addition to ligand binding, proximity to molecules, critical concentration thresholds, physical forces, and other aspects may direct cell signaling. Novel approaches to modulate ligand–receptor interactions 'on-demand' show that receptor clustering can trigger diverse cellular outcomes in the absence of ligands. Studies of ligand-independent clustering may stimulate the future development of unique therapeutics that target and manipulate receptors and their signaling pathways with high specificity and spatiotemporal control. Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling. Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling. an agonist is a ligand that interacts with a specific membrane receptor and elicits a positive response. Agonist bias refers to the propensity of an agonist to direct receptor signaling through one pathway relative to another. For GPCRs, signaling bias may refer to preferential activation of β-arrestin-dependent signaling compared to G protein-dependent signaling. An inverse agonist is a ligand that inhibits constitutive receptor activity. An antagonist is a ligand or drug that binds to the receptor and inhibits a biological response. liquid-like membraneless compartments that are enriched in proteins, RNA, and other biomolecules that perform distinct functions inside cells. the region between plasma membranes of two cells in contact. These compartments display a unique subcellular environment defined by specific molecules and biophysical properties, which differ from the rest of the plasma membrane. receptor activation and signaling in the absence of ligand. Constitutive activity has been well characterized for GPCRs where receptors and G proteins exist in an equilibrium between active and inactive state. However, receptor clustering, phase separation, and mechanical stimuli can also influence this activation. DNA is a chemical material with highly designable, predictable, and controllable properties and can be used as a building block for the construction of diverse nanostructures. higher-order assemblies with a size of hundreds of nanometers, rather than dimers or trimers, which may be formed during receptor signaling. the stable interface between a T cell and an antigen-presenting cell (APC). IS assembly is triggered when an APC presents a specific peptide antigen in association to a major histocompatibility complex (MHC) molecule (pMHC:TCR). IS formation involves a spatiotemporal redistribution of T cell receptors (TCRs), costimulatory receptors, and integrins, leading to a highly dynamic TCR signaling hub. a compartmentalization mechanism in which multivalent macromolecular interactions drive the transition of proteins or nucleic acids into a concentrated phase. physical signals detected through mechanoreceptors. The mechanical stimulus is usually applied to membrane receptors on cells in direct physical contact with the extracellular matrix (ECM) or on adjacent cells through ligand binding. receptor assemblies of several hundreds of nanometers. the process by which molecules spontaneously associate through noncovalent interactions into stable, well-defined structures. the optical control of biomolecules with high spatiotemporal resolution via optochemical tools such as engineered proteins, photoactive small molecules, peptides, or nucleic acids. a set of methods to precisely control the biological functions of cells, tissues, or organs with high spatiotemporal resolution by using genetically encoded light-sensitive proteins. non-stoichiometric assemblies driven by combinatorial multivalent interactions that are heterogeneous in size and state. an assembly of receptors and their effectors at the plasma membrane. the nanoscale shape and spatial arrangement of elements which directly interact with the plasma membrane of a living cell. a novel interdisciplinary research area following engineering principles to redesign and construct biological systems for useful purposes. top-down approaches equip existing cells with new functionalities, whereas bottom-up approaches use biological building blocks to construct modules that can be used to recreate cell functions in vitro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周舟完成签到 ,获得积分10
刚刚
V_I_G完成签到 ,获得积分10
1秒前
nick完成签到,获得积分10
2秒前
高高高完成签到 ,获得积分10
5秒前
彪壮的亦瑶完成签到 ,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Perry应助科研通管家采纳,获得60
8秒前
Akim应助科研通管家采纳,获得10
8秒前
鱼雷完成签到,获得积分10
9秒前
廿伊发布了新的文献求助10
11秒前
我是125完成签到,获得积分10
13秒前
依人如梦完成签到 ,获得积分10
14秒前
15秒前
PDIF-CN2完成签到,获得积分10
19秒前
雪雪完成签到 ,获得积分10
20秒前
21秒前
Willow完成签到,获得积分10
24秒前
研研研完成签到,获得积分10
25秒前
大橙子发布了新的文献求助10
27秒前
dejiangcj完成签到 ,获得积分10
28秒前
无味完成签到,获得积分10
29秒前
大气的尔蓝完成签到,获得积分10
30秒前
科研通AI5应助普鲁卡因采纳,获得10
31秒前
略略略完成签到 ,获得积分10
33秒前
zqlxueli完成签到 ,获得积分10
37秒前
无语的断缘完成签到,获得积分10
39秒前
hdx完成签到 ,获得积分10
40秒前
健壮的涑完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
45秒前
普鲁卡因发布了新的文献求助10
45秒前
高大绝义完成签到,获得积分10
47秒前
49秒前
黄超超发布了新的文献求助10
50秒前
ZEcholy完成签到 ,获得积分20
50秒前
大橙子发布了新的文献求助10
51秒前
小幸运完成签到,获得积分10
53秒前
淡然一德完成签到,获得积分10
56秒前
咖啡豆完成签到 ,获得积分10
57秒前
58秒前
龙猫爱看书完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022