亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An integrated underwater structural multi-defects automatic identification and quantification framework for hydraulic tunnel via machine vision and deep learning

计算机科学 水下 人工智能 冗余(工程) 计算机视觉 像素 分割 数据冗余 探测器 电信 海洋学 操作系统 地质学
作者
Yangtao Li,Tengfei Bao,Xianjun Huang,Ruijie Wang,Xiaosong Shu,Bo Xu,Jiuzhou Tu,Yuhang Zhou,Kang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (4): 2360-2383 被引量:14
标识
DOI:10.1177/14759217221122316
摘要

Underwater structural defects in hydraulic tunnels are highly concealed and difficult to be identified by conventional manual methods. Remotely operated vehicle combined with visible light cameras can provide a noncontact and high spatial resolution damage detection solution. However, manually extracting useful structural damage-related information from massive data is time-consuming and involves high labor cost. This article proposes an integrated pixel-level underwater structural multi-defects instance segmentation and quantification framework for hydraulic tunnels via machine vision and deep learning. Firstly, a tunnel lining underwater structural multi-defects video dataset is developed. Next, an improved You Only Look At CoefficienTs for Edge devices is used to build the detector by exploiting temporal redundancy in videos. Three backbone detectors are used to trade off the balance between detection accuracy and efficiency, and a cross-domain transfer learning strategy is introduced to reduce model training costs and data dependencies. Various complicated tunnel underwater inspection scenarios, including uneven illumination, tilt shooting, high brightness, and motion blur scenarios, are used to evaluate model generalization capability. Experimental results show that ResNet50-based YolactEdge can well trade off the balance between accuracy and speed, which achieves 92.47 bbox mAP, 92.15 mask mAP, and 39.27 FPS in the testing set. A quantification evaluation method is proposed to quantify the detection results and extract the geometric features of structural defects based on digital image processing techniques. The proposed method can accurately identify the number, size, and area of tunnel underwater structural defects, providing data support for subsequent reinforcement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Murphy完成签到 ,获得积分10
2秒前
8秒前
9秒前
18秒前
senger发布了新的文献求助10
23秒前
勿昂完成签到 ,获得积分10
26秒前
26秒前
27秒前
29秒前
ST发布了新的文献求助10
33秒前
Polymer72应助趴菜同学采纳,获得10
39秒前
qqq完成签到 ,获得积分10
40秒前
斯文败类应助ST采纳,获得10
41秒前
giving完成签到 ,获得积分10
42秒前
52秒前
senger完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
fantw完成签到,获得积分10
1分钟前
赘婿应助晗晗子采纳,获得10
1分钟前
xuan发布了新的文献求助10
1分钟前
36038138完成签到 ,获得积分10
1分钟前
1分钟前
土书完成签到,获得积分10
1分钟前
1分钟前
1分钟前
bing完成签到 ,获得积分10
1分钟前
研友_59AB85发布了新的文献求助10
1分钟前
哦呦呦发布了新的文献求助10
1分钟前
搜集达人应助研友_59AB85采纳,获得10
1分钟前
1分钟前
无名老大应助白佐帅采纳,获得30
1分钟前
美满疾应助哦呦呦采纳,获得10
1分钟前
慕青应助Apricity采纳,获得30
2分钟前
2分钟前
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344111
求助须知:如何正确求助?哪些是违规求助? 2971140
关于积分的说明 8646622
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451711
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661788