已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inulin‐A polysaccharide: Review on its functional and prebiotic efficacy

益生元 菊粉 果聚糖 功能性食品 成分 业务 膳食纤维 生物技术 食品科学 健康福利 肠道微生物群 人类健康 微生物群 生物 医学 传统医学 生物信息学 环境卫生 蔗糖
作者
Amrita Bhanja,Parag Prakash Sutar,Monalisa Mishra
出处
期刊:Journal of Food Biochemistry [Wiley]
卷期号:46 (12) 被引量:28
标识
DOI:10.1111/jfbc.14386
摘要

Journal of Food BiochemistryVolume 46, Issue 12 e14386 REVIEW Inulin-A polysaccharide: Review on its functional and prebiotic efficacy Amrita Bhanja, Amrita Bhanja Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, IndiaSearch for more papers by this authorParag Prakash Sutar, Parag Prakash Sutar Department of Food Process Engineering, National Institute of Technology, Rourkela, IndiaSearch for more papers by this authorMonalisa Mishra, Corresponding Author Monalisa Mishra [email protected] orcid.org/0000-0002-9735-7027 Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India Correspondence Monalisa Mishra, Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India. Email: [email protected]Search for more papers by this author Amrita Bhanja, Amrita Bhanja Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, IndiaSearch for more papers by this authorParag Prakash Sutar, Parag Prakash Sutar Department of Food Process Engineering, National Institute of Technology, Rourkela, IndiaSearch for more papers by this authorMonalisa Mishra, Corresponding Author Monalisa Mishra [email protected] orcid.org/0000-0002-9735-7027 Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India Correspondence Monalisa Mishra, Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India. Email: [email protected]Search for more papers by this author First published: 27 September 2022 https://doi.org/10.1111/jfbc.14386Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The intake of dietary fibers in the regular diet results in boosting the gut microbiome and health of the host in several ways. The misapprehension about such dietary fibers of being only an indigestible product has changed into indispensable ingredient that has to be included in every healthy diet. Inulin is considered to be an important naturally occurring fructan classified under such dietary fibers. The present review intends to provide a thorough knowledge on inulin in maintaining the gut microbiome of the human, supported by several studies conducted on the Drosophila melanogaster, mice, rat models as well as effect on human being. The extraction process of inulin has also been described in this review that would provide a brief knowledge about its stability and the conditions that have been optimized by the researchers in order to obtain a stable product. Practical applications In order to meet the consumers demand, the food industries are trying to come up with new products that could eventually replace or lower the utilization of medically avail drugs and satisfy consumers by providing them with health benefits. The availability of functional food is the new trend that can improve health of the consumers with minimal use of the drugs. Therefore, inulin as a prebiotic can be utilized to produce several functional food products that could promote health benefits to the consumers. Apart from this, the review also justifies the efficacy of inulin as a fat replacer, stabilizer, and humectant in cosmetic industries. Research also suggests that inulin has also been used as nanoparticles in pharmaceutical industries. The overall review also depicts the different extraction process of inulin from different sources. CONFLICT OF INTEREST The authors declare no competing interests. Open Research DATA AVAILABILITY STATEMENT All data and material regarding this review article is completely transparent. REFERENCES Afinjuomo, F., Barclay, T. G., Song, Y. M., Parikh, A., Petrovsky, N., & Garg, S. (2019). Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. Reactive & Functional Polymers, 134, 104–111. https://doi.org/10.1016/j.reactfunctpolym.2018.10.014 Ahmed, W., & Rashid, S. (2019). Functional and therapeutic potential of inulin: A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(1), 1–13. https://doi.org/10.1080/10408398.2017.1355775 Akram, W., Joshi, R., & Garud, N. (2019). Inulin: A promising carrier for controlled and targeted drug delivery system. Journal of Drug Delivery and Therapeutics, 9(1-s), 437–441. https://doi.org/10.22270/jddt.v9i1-s.2398 Alabadi, A., & Abood, S. C. (2020). Microwave-assisted extraction of inulin from jerusalem artichoke and partial acid hydrolyses. The Iraqi Journal of Agricultural Science, 51(1), 401–410. Kusmiyati, N., Wahyuningsih, T. D., & Widodo, H. (2018). Extraction and identification of inulin-type fructo-oligosaccharides from Dahlia pinnata L. Asian Journal of Chemistry, 30(2), 355–358. https://doi.org/10.14233/ajchem.2018.20965 Arcia, P. L., Costell, E., & Tarrega, A. (2011). Inulin blend as prebiotic and fat replacer in dairy desserts: Optimization by response surface methodology. Journal of Dairy Science, 94(5), 2192–2200. https://doi.org/10.3168/jds.2010-3873 Aryan, S., Hosseini, A. A., Mohammadi, R., Moradi, S., Sadeghi, E., & Pasdar, Y. (2018). Optimization of inulin extracted with ultrasonic-assisted from Ornithogalum arcuatum liliaceae Stev. as a new source by response surface methodology. Current Nutrition & Food Science, 14(5), 414–421. https://doi.org/10.2174/1573401313666170821125835 Barclay, T., Ginic-Markovic, M., Cooper, P., & Petrovsky, N. (2016). Inulin-A versatile polysaccharide with multiple pharmaceutical and food chemical uses. Journal of Excipients and Food Chemicals, 1(3), 1132. Bhanja, A., Nayak, N., Mukherjee, S., Sutar, P. P., & Mishra, M. (2022). Treating the Onset of Diabetes Using Probiotics Along with Prebiotic from Pachyrhizus erosus in High-Fat Diet Fed Drosophila melanogaster. Probiotics and Antimicrobial Proteins, 1–20. Bissa, S., Bohra, A., & Bohra, A. (2011). Screening of Dahlia pinnata for its antimicrobial activity. Journal of Research in Biology, 1, 51–55. Buddington, K. K., Donahoo, J. B., & Buddington, R. K. (2002). Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. The Journal of Nutrition, 132(3), 472–477. https://doi.org/10.1093/jn/132.3.472 Cai, L. (2018). Optimization of enzyme-assisted supercritical carbon dioxide extraction of inulin from yacon by response surface methodology. Storage and Process, 18(5), 72–78. Chaimala, A., Jogloy, S., Vorasoot, N., Toomsan, B., Jongrungklang, N., Kesmala, T., & Kvien, C. K. (2020). Responses of total biomass, shoot dry weight, yield and yield components of jerusalem artichoke (Helianthus tuberosus L.) varieties under different terminal drought duration. Agriculture-Basel, 10(6), 198. https://doi.org/10.3390/agriculture10060198 Charoenwongpaiboon, T., Wangpaiboon, K., Panpetch, P., Field, R. A., Barclay, J. E., Pichyangkura, R., & Kuttiyawong, K. (2019). Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydrate Polymers, 223, 115044. https://doi.org/10.1016/j.carbpol.2019.115044 Chawla, R., & Patil, G. R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178–196. https://doi.org/10.1111/j.1541-4337.2009.00099.x Chen, M., Fan, B., Liu, S., Imam, K., Xie, Y., Wen, B., & Xin, F. (2020). The in vitro effect of fibers with different degrees of polymerization on human gut bacteria. Frontiers in Microbiology, 11, 819. https://doi.org/10.3389/fmicb.2020.00819 Chen, Y., Tan, W. Q., Li, Q., Dong, F., Gu, G. D., & Guo, Z. Y. (2018). Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. International Journal of Biological Macromolecules, 113, 1273–1278. https://doi.org/10.1016/j.ijbiomac.2018.03.055 Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102(6), 4295–4303. https://doi.org/10.1016/j.biortech.2010.12.086 Chikkerur, J., Samanta, A. K., Kolte, A. P., Dhali, A., & Roy, S. (2019). Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Applied Biochemistry and Biotechnology, 1-21, 695–715. https://doi.org/10.1007/s12010-019-03215-7 Cornes, R., Sintes, C., Pena, A., Albin, S., O'Brien, K. O., Abrams, S. A., & Donangelo, C. M. (2022). Daily intake of a functional synbiotic yogurt increases calcium absorption in young adult women. The Journal of Nutrition, 152, 1647–1654. https://doi.org/10.1093/jn/nxac088 Dobre, T., Stroescu, M., Stoica, A., Draghici, E., & Antohe, N. (2008). Inulin extraction and encapsulation. Rev Chimie, 53(67), 215–217. Dong, Y., Sun, H., Yang, W., Ma, S., Du, B., & Xu, H. (2019). The effect of inulin on lifespan, related gene expression and gut microbiota in InR(p5545)/TM3 mutant Drosophila melanogaster: A preliminary study. Nutrients, 11(3), 636. https://doi.org/10.3390/nu11030636 Dyakova, N., Gaponov, S., Slivkin, A., Belenova, A., Karlov, P., & Lavrov, S. (2021). Elaboration of an express technique for inulin extraction from the roots of elecampane (Inula helenium L.). In Paper presented at the IOP Conference Series: Earth and Environmental Science (Vol. 640, 052021) Voronezh, Russian Federation. Escobar-Ledesma, F. R., Sánchez-Moreno, V. E., Vera, E., Ciobotă, V., Jentzsch, P. V., & Jaramillo, L. I. (2020). Extraction of inulin from andean plants: An approach to non-traditional crops of Ecuador. Molecules, 25(21), 5067. https://doi.org/10.3390/molecules25215067 Esmaeili, F., Hashemiravan, M., Eshaghi, M. R., & Gandomi, H. (2021). Optimization of aqueous extraction conditions of inulin from the Arctium lappa L. roots Using ultrasonic irradiation frequency. Journal of Food Quality, 2021, 5520996. doi.org/10.1155/2021/5520996 Fachri, B. A., Setiawan, F. A., Putri, D. K. Y., & Rahmawati, A. (2020). The microwave-assisted extraction of inulin from Dahlia Sp. tubers in water. In Paper presented at the AIP Conference Proceedings. Jember, Indonesia. Fadaei, V., Poursharif, K., Daneshi, M., & Honarvar, M. (2012). Chemical characteristics of low-fat wheyless cream cheese containing inulin as fat replacer. European Journal of Experimental Biology, 2(3), 690–694. Fellows, R., Denizot, J., Stellato, C., Cuomo, A., Jain, P., Stoyanova, E., Balázsi, S., Hajnády, Z., Liebert, A., Kazakevych, J., Blackburn, H., Corrêa, R. O., Fachi, J. L., Sato, F. T., Ribeiro, W. R., Ferreira, C. M., Perée, H., Spagnuolo, M., Mattiuz, R., ⋯ Varga-Weisz, P. (2018). Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications, 9(1), 1–15. https://doi.org/10.1038/s41467-017-02651-5 Fu, Y.-P., Li, L.-X., Zhang, B.-Z., Paulsen, B. S., Yin, Z.-Q., Huang, C., Feng, B., Chen, X.-F., Jia, R.-R., Song, X., Ni, X.-Q., Jing, B., Wu, F.-M., & Zou, Y.-F. (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193, 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065 Furlán, L. T. R., Padilla, A. P., & Campderrós, M. E. (2014). Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Science, 96(2), 762–768. https://doi.org/10.1016/j.meatsci.2013.09.015 Gaafar, A., El-Din, M. S., Boudy, E., & El-Gazar, H. (2010). Extraction conditions of inulin from Jerusalem artichoke tubers and its effects on blood glucose and lipid profile in diabetic rats. Journal of American Science, 6(5), 36–43. Guarner, F. (2005). Inulin and oligofructose: Impact on intestinal diseases and disorders. The British Journal of Nutrition, 93(S1), S61–S65. https://doi.org/10.1079/bjn20041345 Gupta, A. K., Kaur, N., & Kaur, N. (2003). Preparation of inulin from chicory roots. Journal of Scientific and Industrial Research, 62, 916–920. Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756 Hu, Y., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., & Guo, Z. (2014). Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. International Journal of Biological Macromolecules, 70, 44–49. https://doi.org/10.1016/j.ijbiomac.2014.06.024 Huang, S. C., Tsai, Y. F., & Chen, C. M. (2011). Effects of wheat fiber, oat fiber, and inulin on sensory and physico-chemical properties of chinese-style sausages. Asian-Australasian Journal of Animal Sciences, 24(6), 875–880. https://doi.org/10.5713/ajas.2011.10317 Jimenez-Sanchez, M., Perez-Morales, R., Goycoolea, F. M., Mueller, M., Praznik, W., Loeppert, R., Bermúdez- Morales, V., Zavala-Padilla, G., Ayala, M., & Olvera, C. (2019). Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydrate Polymers, 215, 160–169. https://doi.org/10.1016/j.carbpol.2019.03.060 Karimi, R., Azizi, M. H., Ghasemlou, M., & Vaziri, M. (2015). Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers, 119, 85–100. https://doi.org/10.1016/j.carbpol.2014.11.029 Kelly-Quagliana, K. A., Nelson, P. D., & Buddington, R. K. (2003). Dietary oligofructose and inulin modulate immune functions in mice. Nutrition Research, 23(2), 257–267. https://doi.org/10.1016/S0271-5317(02)00516-X Khanal, B. K. S., & Bansal, N. (2020). Dairy fat replacement in low-fat cheese (LFC): A review of successful technological interventions. In T. Truong, C. Lopez, B. Bhandari, & S. Prakash (Eds.), Dairy fat products and functionality (pp. 549–581). Springer. https://doi.org/10.1007/978-3-030-41661-4_23 Khuenpet, K., Truong, N., & Polpued, R. (2020). Inulin extraction from Jerusalem artichoke (Helianthus tuberosus L.) tuber powder and its application to Yoghurt snack. International Journal of Agricultural Technology, 16(2), 271–282. Kim, W. S., Lee, J. Y., Singh, B., Maharjan, S., Hong, L., Lee, S. M., Cui, L. M., Lee, K. J., Kim, G., Yun, C. H., Kang, S. K., Choi, Y. J., & Cho, C. S. (2018). A new way of producing pediocin in Pediococcus acidilactici through intracellular stimulation by internalized inulin nanoparticles. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/S41598-018-24227-Z Koca, N., & Metin, M. (2004). Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. International Dairy Journal, 14(4), 365–373. https://doi.org/10.1016/j.idairyj.2003.08.006 Lara-Fiallos, M. V., Bastidas-Delgado, L. A., Montalvo Villacreses, D. T., Espín Valladares, R. C., Núñez Pérez, J., Pérez Martínez, A., Vispo, N. S., Cabrera, H. R., Suárez, E. G., & Pais Chanfrau, J. M. (2021). Optimization of inulin extraction from garlic (Allium sativum L.) waste using the response surface methodology. Revista Educación Madrid, 392(54), 2–31. Lattanzio, V., Kroon, P. A., Linsalata, V., & Cardinali, A. (2009). Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods, 1(2), 131–144. https://doi.org/10.1016/j.jff.2009.01.002 Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G., & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121, 315–319. https://doi.org/10.1016/j.carbpol.2014.12.055 Lima, E. C. S., Manhães, L. R. T., Santos, E. R., Feijó, M. B. S., & Sabaa-Srur, A. U. O. (2021). Optimization of the inulin aqueous extraction process from the açaí (Euterpe oleracea, Mart.) seed. Food Science and Technology, 41, 884–889. https://doi.org/10.1590/fst.24920 Lingyun, W., Jianhua, W., Xiaodong, Z., Da, T., Yalin, Y., Chenggang, C., Tianhua, F., & Fan, Z. (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering, 79(3), 1087–1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028 Liu, J., Dong, F., Xue, Q., Guo, Z., & Sun, H. (2010). The moisture absorption and retention abilities of carboxymethyl inulin and quaternized inulin. In Paper presented at the 2010 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China. Liu, Z., Liu, F., Wang, W., Sun, C., Gao, D., Ma, J., Hussain, M. A., Xu, C., Jiang, Z., & Hou, J. (2020). Study of the alleviation effects of a combination of Lactobacillus rhamnosus and inulin on mice with colitis. Food & Function, 11(5), 3823–3837. https://doi.org/10.1039/c9fo02992c Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(Database issue), D490–D495. https://doi.org/10.1093/nar/gkt1178 Lou, Z. X., Wang, H. X., Wang, D. X., & Zhang, Y. (2009). Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydrate Polymers, 78(4), 666–671. https://doi.org/10.1016/j.carbpol.2009.05.029 Martono, Y., Apriliyani, S. A., Riyanto, C. A., & Kusmita, L. (2019). Optimization of conventional and ultrasound assisted extraction of inulin from gembili tubers (Dioscorea esculenta L.) using response surface methodology (RSM). In Paper presented at the IOP Conference Series: Materials Science and Engineering. Oradea, Felix SPA. Menegas, L. Z., Pimentel, T. C., Garcia, S., & Prudencio, S. H. (2013). Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Science, 93(3), 501–506. https://doi.org/10.1016/j.meatsci.2012.11.003 Meyer, D., Bayarri, S., Tarrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Food Hydrocolloids, 25(8), 1881–1890. https://doi.org/10.1016/j.foodhyd.2011.04.012 Milani, E., Koocheki, A., & Golimovahhed, Q. A. (2011). Extraction of inulin from Burdock root (Arctium lappa) using high intensity ultrasound. International Journal of Food Science and Technology, 46(8), 1699–1704. https://doi.org/10.1111/j.1365-2621.2011.02673.x Moridi Farimani, M., Ahmadi, E., & Rezadoost, H. (2022). Optimization of inulin extraction from Inula helenium L. using response surface methodology followed by its MALDI-TOF and TLC-FLD based characterization. Journal of Medicinal Plants, 21(82), 43–55. Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1–6. https://doi.org/10.1016/j.ijbiomac.2013.06.044 Ozyurt, V. H., & Otles, S. (2016). Effect of food processing on the physicochemical properties of dietary fibre. Acta Scientiarum Polonorum. Technologia Alimentaria, 15(3), 233–245. https://doi.org/10.17306/J.AFS.2016.3.23 Petkova, N., Hambarlyiska, I., Tumbarski, Y., Vrancheva, R., Raeva, M., & Ivanov, I. (2022). Phytochemical composition and antimicrobial properties of burdock (Arctium lappa L.) roots extracts. Biointerface Research in Applied Chemistry, 12, 2826–2842. https://doi.org/10.33263/BRIAC123.28262842 Petkova, N., Sherova, G., & Denev, P. (2018). Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. International Food Research Journal, 25(5), 1876–1884. Puhlmann, M. L., & de Vos, W. M. (2020). Back to the roots: Revisiting the use of the fiber-rich Cichorium intybus L. taproots. Advances in nutrition, 11(4), 878–889. https://doi.org/10.1093/advances/nmaa025 Rahul, R., Jha, U., Sen, G., & Mishra, S. (2014). A novel polymeric flocculant based on polyacrylamide grafted inulin: Aqueous microwave assisted synthesis. Carbohydrate Polymers, 99, 11–21. https://doi.org/10.1016/j.carbpol.2013.07.082 Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G., & Louis, P. (2009). Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. The British Journal of Nutrition, 101(4), 541–550. https://doi.org/10.1017/S0007114508019880 Ramnani, P., Gaudier, E., Bingham, M., van Bruggen, P., Tuohy, K. M., & Gibson, G. R. (2010). Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: A human intervention study. The British Journal of Nutrition, 104(2), 233–240. https://doi.org/10.1017/S000711451000036X Redondo-Cuenca, A., Herrera-Vazquez, S. E., Condezo-Hoyos, L., Gomez-Ordonez, E., & Ruperez, P. (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products, 170, 113726. https://doi.org/10.1016/j.indcrop.2021.113726 Ren, J. M., Liu, J. L., Dong, F., & Guo, Z. Y. (2011). Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin. Carbohydrate Polymers, 85(1), 268–271. https://doi.org/10.1016/j.carbpol.2011.01.041 Roberfroid, M. B. (2005). Introducing inulin-type fructans. The British Journal of Nutrition, 93(S1), S13–S25. https://doi.org/10.1079/bjn20041350 Rogge, T. M., Stevens, C. V., Colpaert, A., Levecke, B., & Booten, K. (2007). Use of acyl phosphonates for the synthesis of inulin esters and their use as emulsion stabilizing agents. Biomacromolecules, 8(2), 485–489. https://doi.org/10.1021/bm060592z Rubel, I. A., Iraporda, C., Novosad, R., Cabrera, F. A., Genovese, D. B., & Manrique, G. D. (2018). Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods. Food Research International, 103, 226–233. https://doi.org/10.1016/j.foodres.2017.10.041 Saengkanuk, A., Nuchadomrong, S., Jogloy, S., Patanothai, A., & Srijaranai, S. (2011). A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. European Food Research and Technology, 233(4), 609–616. https://doi.org/10.1007/s00217-011-1552-3 Sarkar, R., Bhowmik, A., Kundu, A., Dutta, A., Nain, L., Chawla, G., & Saha, S. (2021). Inulin from Pachyrhizus erosus root and its production intensification using evolutionary algorithm approach and response surface methodology. Carbohydrate Polymers, 251, 117042. https://doi.org/10.1016/j.carbpol.2020.117042 Senés-Guerrero, C., Gradilla-Hernández, M. S., García-Gamboa, R., & García-Cayuela, T. (2020). Dietary fiber and gut microbiota. In J. Welti-Chanes, S. Serna-Saldívar, O. Campanella, & V. Tejada-Ortigoza (Eds.), Science and technology of fibers in food systems (pp. 277–298). Springer. https://doi.org/10.1007/978-3-030-38654-2_12 Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., … Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444–454. https://doi.org/10.1016/j.carbpol.2016.04.020 Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435. https://doi.org/10.3390/nu5041417 Sritiawthai, E., Kaewtapee, C., Bunchasak, C., & Poeikhampha, T. (2013). Effect of Jerusalem artichoke (Helianthus tuberosus L.) supplementation on production performances, egg quality characteristics and intestinal microflora of laying hens. Journal of Applied Sciences, 13(1), 183–187. Temkov, M., Petkova, N., Denev, P., & Krastanov, A. (2015). Characterization of inulin from Helianthus tuberosus L. obtained by different extraction methods–Comparative study. Scientific Works of University of Food Technologies, 62, 461–464. Terkmane, N., Krea, M., & Moulai-Mostefa, N. (2016). Optimisation of inulin extraction from globe artichoke (Cynara cardunculus L. subsp scolymus [L.] Hegi.) by electromagnetic induction heating process. International Journal of Food Science and Technology, 51(9), 1997–2008. https://doi.org/10.1111/ijfs.13167 Tewari, S., Ramalakshmi, K., Methre, L., & Rao, J. M. (2015). Microwave-assisted extraction of inulin from chicory roots using response surface methodology. Nutrition & Food Sciences, 5, 1000342. Urgu, M., Türk, A., Ünlütürk, S., Kaymak-Ertekin, F., & Koca, N. (2019). Milk fat substitution by microparticulated protein in reduced-fat cheese emulsion: The effects on stability, microstructure, rheological and sensory properties. Food science of animal resources, 39(1), 23–34. https://doi.org/10.5851/kosfa.2018.e60 Vassilev, D., Petkova, N., Koleva, M., & Denev, P. (2018). Microwave synthesis of inulin acetate as potential bio-based additive for poly(vinyl chloride). Journal of Renewable Materials, 6(7), 707–714. https://doi.org/10.32604/Jrm.2018.00015 Villegas, B., Tarrega, A., Carbonell, I., & Costell, E. (2010). Optimising acceptability of new prebiotic low-fat milk beverages. Food Quality and Preference, 21(2), 234–242. https://doi.org/10.1016/j.foodqual.2009.03.001 Volsi, A. L., de Aberasturi, D. J., Henriksen-Lacey, M., Giammona, G., Licciardi, M., & Liz-Marzán, L. M. (2016). Inulin coated plasmonic gold nanoparticles as a tumor-selective tool for cancer therapy. Journal of Materials Chemistry B, 4(6), 1150–1155. https://doi.org/10.1039/C5TB01810B Wan, X., Guo, H., Liang, Y., Zhou, C., Liu, Z., Li, K., Niu, F., Zhai, X., & Wang, L. (2020). The physiological functions and pharmaceutical applications of inulin: A review. Carbohydrate Polymers, 246, 116589. https://doi.org/10.1016/j.carbpol.2020.116589 Wei, L. Y., Yang, W. Z., Wang, J. H., Tian, Q. H., & He, Z. X. (2019). Synthesis and characterization of calcium phosphorylated inulin complex as a new source of enriched calcium supplement with prebiotic effect in food. Food Science and Technology, 39, 237–244. https://doi.org/10.1590/fst.37017 Weitkunat, K., Schumann, S., Petzke, K. J., Blaut, M., Loh, G., & Klaus, S. (2015). Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. The Journal of Nutritional Biochemistry, 26(9), 929–937. https://doi.org/10.1016/j.jnutbio.2015.03.010 Yang, J., Zhang, S., Henning, S. M., Lee, R., Hsu, M., Grojean, E., Pisegna, R., Ly, A., Heber, D., & Li, Z. (2018). Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet. The Journal of Nutritional Biochemistry, 52, 62–69. https://doi.org/10.1016/j.jnutbio.2017.10.003 Yousefi, M., Khorshidian, N., & Hosseini, H. (2018). An overview of the functionality of inulin in meat and poultry products. Nutrition & Food Science, 48, 819–835. https://doi.org/10.1108/NFS-11-2017-0253 Yuniritha, E., & Avelia, A. (2019). Effectiveness of jicama probiotic yoghurt (Pachyrhizus erosus) on blood glucose in diabetic mice. KnE Life Sciences, 250–261. https://doi.org/10.18502/kls.v4i15.5768 Zeaiter, Z., Regonesi, M. E., Cavini, S., Labra, M., Sello, G., & Di Gennaro, P. (2019). Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Research International, 2019, 1083952. https://doi.org/10.1155/2019/1083952 Zeitoun, M. A. (2018). Evaluation of globe artichoke by-products for enhancing functional properties of some foods. Journal of the Advances in Agricultural Researches, 23(1), 112–129. Zhang, X., Zhu, X., Shi, X., Hou, Y., & Yi, Y. (2022). Extraction and purification of inulin from jerusalem artichoke with response surface method and ion exchange resins. ACS Omega, 7(14), 12048–12055. https://doi.org/10.1021/acsomega.2c00302 Zhu, Z., Wu, M., Cai, J., Li, S., Marszalek, K., Lorenzo, J. M., & Barba, F. J. (2019). Optimization of spray-drying process of Jerusalem artichoke extract for inulin production. Molecules, 24(9), 1674. https://doi.org/10.3390/molecules24091674 Öztürk, B., & Serdaroğlu, M. (2017). A rising star prebiotic dietary fiber: Inulin and recent applications in meat products. Food and Health, 3(1), 12–20. https://doi.org/10.3153/JFHS17002 Volume46, Issue12December 2022e14386 This article also appears in:Food Carbohydrates: Bioactivities and Functional Food ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Owen应助Gentlegirl采纳,获得10
4秒前
炙热孤容完成签到 ,获得积分10
5秒前
kingjames完成签到,获得积分10
6秒前
9秒前
杨乃彬完成签到,获得积分10
9秒前
Huang完成签到,获得积分10
9秒前
13秒前
绾妤完成签到 ,获得积分10
13秒前
立军发布了新的文献求助10
14秒前
鹰隼游完成签到 ,获得积分10
15秒前
19秒前
CCD完成签到 ,获得积分10
19秒前
ryanfeng完成签到,获得积分10
19秒前
丫丫完成签到 ,获得积分10
21秒前
上官若男应助Leslie采纳,获得30
22秒前
圆圆完成签到 ,获得积分10
23秒前
23秒前
今我来思完成签到 ,获得积分10
24秒前
oweing发布了新的文献求助30
24秒前
24秒前
30秒前
小太阳完成签到 ,获得积分10
31秒前
1111111完成签到,获得积分20
31秒前
31秒前
Anna完成签到 ,获得积分10
32秒前
金灶沐完成签到 ,获得积分10
32秒前
立军完成签到,获得积分10
35秒前
快乐的慕灵完成签到 ,获得积分10
35秒前
38秒前
gggghhhh发布了新的文献求助10
41秒前
莫遥完成签到 ,获得积分10
43秒前
整齐的惮完成签到 ,获得积分10
43秒前
九日橙完成签到 ,获得积分10
48秒前
48秒前
52秒前
wisher完成签到,获得积分10
53秒前
小凯完成签到 ,获得积分10
53秒前
小草三心完成签到 ,获得积分10
54秒前
Leslie发布了新的文献求助30
55秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727