Self-Paced Hard Task-Example Mining for Few-Shot Classification

计算机科学 机器学习 人工智能 杠杆(统计) 任务(项目管理) 一般化 集合(抽象数据类型) 数据挖掘 数学 数学分析 管理 经济 程序设计语言
作者
Renjie Xu,Xinghao Yang,Xingxing Yao,Dapeng Tao,Weijia Cao,Xiaoping Lu,Weifeng Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5631-5644
标识
DOI:10.1109/tcsvt.2023.3263593
摘要

In recent years, researchers have commonly employed assistant tasks to enhance the training phase of the few-shot classification models. Several methods have been proposed to exploit and optimize the training tasks, such as Curriculum Learning (CL) and Hard Example Mining (HEM). However, most of the existing strategies can not elaborately leverage the training tasks and share some common drawbacks, including 1) the ignorance of the target tasks’ properties, and 2) the neglect of sample relationships. In this work, we propose a Self-Paced Hard tAsk-Example Mining (SP-HAEM) method to solve these problems. Specifically, the SP-HAEM automatically chooses hard examples via the similarity between training and target tasks to optimize the support set. To represent the property of target tasks, SP-HAEM obtains a representation of the dataset, called “meta-task”. No need to apply an additional model to measure difficulty and choose hard examples like other HEM methods, SP-HAEM selects the tasks with large optimal transport distance to the meta-task as hard tasks. Thus, training with such hard tasks can not only enhances the generalization ability of the model but also eliminate the negative effect of redundancy tasks. To evaluate the effectiveness of SP-HAEM, we conduct extensive experiments on a variety of datasets, including MiniImageNet, TieredImageNet, and FC100. The results of the experiments show that SP-HAEM can achieve higher accuracy compared with the typical few-shot classification models, e.g., Prototypical Network, MAML, FEAT, and MTL.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助灵巧秋蝶采纳,获得10
2秒前
3秒前
口口完成签到 ,获得积分10
3秒前
3秒前
汉堡包应助YDL采纳,获得10
4秒前
xx完成签到,获得积分10
4秒前
祝顺遂发布了新的文献求助10
5秒前
5秒前
啥文献找不到完成签到 ,获得积分10
5秒前
朱z完成签到,获得积分10
6秒前
星辰大海应助coco采纳,获得10
6秒前
在水一方应助Lllll采纳,获得10
6秒前
liangxianli发布了新的文献求助10
7秒前
岳小龙发布了新的文献求助10
7秒前
7秒前
7秒前
huenguyenvan完成签到,获得积分10
8秒前
碧蓝的南晴完成签到,获得积分10
8秒前
9秒前
whr完成签到,获得积分10
9秒前
shadow发布了新的文献求助10
10秒前
星辰大海应助reck采纳,获得10
10秒前
11秒前
传奇3应助Diligency采纳,获得10
11秒前
11秒前
Ava应助无限电话采纳,获得10
11秒前
12秒前
12秒前
lhxing发布了新的文献求助10
12秒前
xiejuan发布了新的文献求助10
13秒前
13秒前
14秒前
耍酷的世平完成签到,获得积分10
15秒前
可爱的函函应助liangxianli采纳,获得10
15秒前
15秒前
BOB发布了新的文献求助10
16秒前
大个应助殷勤的白玉采纳,获得10
16秒前
yyyyy完成签到,获得积分10
17秒前
小H发布了新的文献求助10
17秒前
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411140
求助须知:如何正确求助?哪些是违规求助? 3014687
关于积分的说明 8864976
捐赠科研通 2702191
什么是DOI,文献DOI怎么找? 1481510
科研通“疑难数据库(出版商)”最低求助积分说明 684873
邀请新用户注册赠送积分活动 679377