Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990–2022)

机器学习 医学 模式 宫颈癌 人工智能 随机森林 荟萃分析 支持向量机 癌症 特征选择 计算机科学 肿瘤科 内科学 社会科学 社会学
作者
Joshua Sheehy,Hamish Rutledge,U. Rajendra Acharya,Hui Wen Loh,Raj Gururajan,Xiaohui Tao,Xujuan Zhou,Yuefeng Li,Tiana Gurney,Srinivas Kondalsamy‐Chennakesavan
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:139: 102536-102536 被引量:14
标识
DOI:10.1016/j.artmed.2023.102536
摘要

Many Computer Aided Prognostic (CAP) systems based on machine learning techniques have been proposed in the field of oncology. The objective of this systematic review was to assess and critically appraise the methodologies and approaches used in predicting the prognosis of gynecological cancers using CAPs.Electronic databases were used to systematically search for studies utilizing machine learning methods in gynecological cancers. Study risk of bias (ROB) and applicability were assessed using the PROBAST tool. 139 studies met the inclusion criteria, of which 71 predicted outcomes for ovarian cancer patients, 41 predicted outcomes for cervical cancer patients, 28 predicted outcomes for uterine cancer patients, and 2 predicted outcomes for gynecological malignancies broadly.Random forest (22.30 %) and support vector machine (21.58 %) classifiers were used most commonly. Use of clinicopathological, genomic and radiomic data as predictors was observed in 48.20 %, 51.08 % and 17.27 % of studies, respectively, with some studies using multiple modalities. 21.58 % of studies were externally validated. Twenty-three individual studies compared ML and non-ML methods. Study quality was highly variable and methodologies, statistical reporting and outcome measures were inconsistent, preventing generalized commentary or meta-analysis of performance outcomes.There is significant variability in model development when prognosticating gynecological malignancies with respect to variable selection, machine learning (ML) methods and endpoint selection. This heterogeneity prevents meta-analysis and conclusions regarding the superiority of ML methods. Furthermore, PROBAST-mediated ROB and applicability analysis demonstrates concern for the translatability of existing models. This review identifies ways that this can be improved upon in future works to develop robust, clinically translatable models within this promising field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助江峰采纳,获得10
刚刚
闻屿发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
3秒前
博尔塔拉完成签到,获得积分10
4秒前
精明瑾瑜关注了科研通微信公众号
6秒前
梦在彼岸应助jacshhhh采纳,获得20
6秒前
asd发布了新的文献求助10
6秒前
星辰大海应助syjjj采纳,获得10
6秒前
qwe发布了新的文献求助10
6秒前
无语的茗茗完成签到,获得积分10
7秒前
SICHEN完成签到,获得积分10
8秒前
舒服的鱼完成签到,获得积分10
9秒前
9秒前
完美世界应助土豪的念桃采纳,获得10
11秒前
zulinxy完成签到,获得积分20
11秒前
12秒前
852应助一水独流采纳,获得10
12秒前
Ava应助Siliconeoil采纳,获得10
12秒前
13秒前
yoyo发布了新的文献求助10
14秒前
700w完成签到 ,获得积分0
14秒前
14秒前
zulinxy发布了新的文献求助10
14秒前
研友_VZG7GZ应助qwe采纳,获得10
15秒前
Sue完成签到,获得积分10
15秒前
15秒前
1111发布了新的文献求助10
16秒前
洁净的星星完成签到,获得积分10
17秒前
TOM龙驳回了今后应助
17秒前
默鹊发布了新的文献求助10
17秒前
18秒前
18秒前
方勇飞发布了新的文献求助10
19秒前
19秒前
研友_VZG7GZ应助芥末采纳,获得10
19秒前
20秒前
研友_VZG7GZ应助博尔塔拉采纳,获得30
20秒前
科目三应助无限桐采纳,获得10
21秒前
谢x07完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149617
求助须知:如何正确求助?哪些是违规求助? 2800663
关于积分的说明 7841062
捐赠科研通 2458157
什么是DOI,文献DOI怎么找? 1308340
科研通“疑难数据库(出版商)”最低求助积分说明 628479
版权声明 601706