Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990–2022)

机器学习 医学 模式 宫颈癌 人工智能 随机森林 荟萃分析 支持向量机 癌症 特征选择 计算机科学 肿瘤科 内科学 社会科学 社会学
作者
Joshua Sheehy,Hamish Rutledge,U. Rajendra Acharya,Hui Wen Loh,Raj Gururajan,Xiaohui Tao,Xujuan Zhou,Yuefeng Li,Tiana Gurney,Srinivas Kondalsamy‐Chennakesavan
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:139: 102536-102536 被引量:18
标识
DOI:10.1016/j.artmed.2023.102536
摘要

Many Computer Aided Prognostic (CAP) systems based on machine learning techniques have been proposed in the field of oncology. The objective of this systematic review was to assess and critically appraise the methodologies and approaches used in predicting the prognosis of gynecological cancers using CAPs.Electronic databases were used to systematically search for studies utilizing machine learning methods in gynecological cancers. Study risk of bias (ROB) and applicability were assessed using the PROBAST tool. 139 studies met the inclusion criteria, of which 71 predicted outcomes for ovarian cancer patients, 41 predicted outcomes for cervical cancer patients, 28 predicted outcomes for uterine cancer patients, and 2 predicted outcomes for gynecological malignancies broadly.Random forest (22.30 %) and support vector machine (21.58 %) classifiers were used most commonly. Use of clinicopathological, genomic and radiomic data as predictors was observed in 48.20 %, 51.08 % and 17.27 % of studies, respectively, with some studies using multiple modalities. 21.58 % of studies were externally validated. Twenty-three individual studies compared ML and non-ML methods. Study quality was highly variable and methodologies, statistical reporting and outcome measures were inconsistent, preventing generalized commentary or meta-analysis of performance outcomes.There is significant variability in model development when prognosticating gynecological malignancies with respect to variable selection, machine learning (ML) methods and endpoint selection. This heterogeneity prevents meta-analysis and conclusions regarding the superiority of ML methods. Furthermore, PROBAST-mediated ROB and applicability analysis demonstrates concern for the translatability of existing models. This review identifies ways that this can be improved upon in future works to develop robust, clinically translatable models within this promising field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gogoyoco发布了新的文献求助10
刚刚
红花会完成签到,获得积分10
刚刚
2秒前
2秒前
雪白发卡发布了新的文献求助10
2秒前
3秒前
SciGPT应助gogoyoco采纳,获得10
4秒前
5秒前
红花会发布了新的文献求助10
5秒前
Jasper应助chiq采纳,获得10
6秒前
噗噗xie发布了新的文献求助10
7秒前
SYLH应助跳跃的洪纲采纳,获得20
7秒前
黄婷发布了新的文献求助10
8秒前
钙离子发布了新的文献求助10
9秒前
MG_XSJ完成签到,获得积分10
9秒前
9秒前
啦啦啦发布了新的文献求助50
10秒前
量子星尘发布了新的文献求助10
10秒前
鳗鱼笑翠完成签到,获得积分10
11秒前
小蘑菇应助小颉江二郎采纳,获得10
12秒前
12秒前
13秒前
碧蓝莫言完成签到 ,获得积分10
13秒前
cfjbxf完成签到,获得积分10
14秒前
Nancy2023发布了新的文献求助10
15秒前
黄飚完成签到,获得积分10
15秒前
16秒前
尺子尺子和池子完成签到,获得积分10
16秒前
yeyeye发布了新的文献求助10
17秒前
斯文败类应助黄花采纳,获得10
17秒前
柯一一应助veggieg采纳,获得10
18秒前
18秒前
柯一一应助veggieg采纳,获得10
18秒前
丘比特应助DZ采纳,获得10
18秒前
18秒前
18秒前
19秒前
核桃应助欣喜靖采纳,获得10
20秒前
22秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226