已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abstract 6606: Biomarker discovery in non-small-cell lung cancer enabled by deep multi-omics profiling of proteins, metabolites, transcripts, and genes in blood

肺癌 组学 液体活检 生物标志物发现 生物标志物 癌症 生物 疾病 医学 生物信息学 肿瘤科 内科学 蛋白质组学 基因 遗传学
作者
Jinlyung Choi,Ajinkya Kokate,Ehdieh Khaledian,Manway Liu,Preethi Prasad,John Blume,Jessica Chan,Rea Cuaresma,Kevin Dai,Manoj Khadka,Thidar Khin,Yuya Kodama,Joon-Yong Lee,Hoda Malekpour,Megan Mora,Nithya Mudaliar,Sara Nouri Golmaei,Madhuvanthi Ramaiah,Saividya Ramaswamy,Peter Spiro,Dijana Vitko,Kavya Swaminathan,James Yee,Brian Young,Chinmay Belthangady,Bruce Wilcox,Brian Koh,Philip Ma
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 6606-6606
标识
DOI:10.1158/1538-7445.am2023-6606
摘要

Abstract Lung cancer is the leading cause of cancer-related deaths in the United States, with estimates of 236,740 new cases and 118,830 deaths in 2022 secondary to the disease. Blood-based liquid biopsies hold promise to reduce morbidity and mortality from lung cancer by enabling early detection to downstage disease at diagnosis, theragnostic identification of patients most likely to be helped or harmed by therapy, monitoring of therapeutic efficacy, and detection of residual disease. PrognomiQ’s multi-omics platform comprehensively profiles proteins, metabolites, lipids, mRNA, and cfDNA in blood samples which can be used for the development of liquid biopsy tests with high sensitivity and specificity for lung cancer. We conducted a case-control study comprising 1031 subjects: 361 subjects with untreated non-small-cell lung cancer (NSCLC) and 670 matched controls which included 340 subjects with salient pulmonary and gastrointestinal co-morbidities. Blood samples from each subject were processed to provide 7 different `omics readouts. LCMS was used to detect and quantify proteins, metabolites, and lipids. In addition, cfDNA and mRNA were assayed using next-generation sequencing. cfDNA reads were analyzed to estimate fragment-lengths, copy-number variation, and CpG site methylation. All molecular data were normalized using standard methods specific to each assay. Univariate analyses of cases vs controls were performed to identify differentially abundant features on all available samples per assay. We detected 9,868 proteins, 605 lipids, 329 metabolites, and 109,070 mRNA transcripts. Of these, 3,098 proteins, 210 lipids, 57 metabolites, and 30,236 mRNA transcripts were significantly different (FWER < 0.05) in cases versus controls. Gene set enrichment analysis on statistically significant transcripts and proteins identified multiple gene-ontology terms associated with cancer including the Wnt signaling process and IgA immunoglobulin complex, respectively. From cfDNA data, we identified 234 non-contiguous genomic regions associated with the fragment-length disorder, 4,790 with copy-number variation, and 74 differentially methylated genomic regions spanning 184 CpG sites (FWER < 0.05). With the premise that deviations from copy number neutrality are more likely to indicate a tumor contribution, we then focused our examination on those differentially expressed proteins that overlap with differentially expressed mRNA transcripts as well as CNV genomic regions. We identified 52 protein coding genes including E-cadherin (associated with EMT) and related binding proteins such as RAB11B, CAPZB, EPS15, FLNB, MYH9, STK24 and YWHAE. Ongoing machine-learning-based classifier training to distinguish between cancer and non-cancer can serve as the basis for the development of high-sensitivity liquid-biopsy tests for lung cancer. Citation Format: Jinlyung Choi, Ajinkya Kokate, Ehdieh Khaledian, Manway Liu, Preethi Prasad, John Blume, Jessica Chan, Rea Cuaresma, Kevin Dai, Manoj Khadka, Thidar Khin, Yuya Kodama, Joon-Yong Lee, Hoda Malekpour, Megan Mora, Nithya Mudaliar, Sara Nouri Golmaei, Madhuvanthi Ramaiah, Saividya Ramaswamy, Peter Spiro, Dijana Vitko, Kavya Swaminathan, James Yee, Brian Young, Chinmay Belthangady, Bruce Wilcox, Brian Koh, Philip Ma. Biomarker discovery in non-small-cell lung cancer enabled by deep multi-omics profiling of proteins, metabolites, transcripts, and genes in blood. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6606.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mtx3098520564关注了科研通微信公众号
1秒前
英俊的铭应助凯哈哈采纳,获得50
2秒前
From发布了新的文献求助10
8秒前
19秒前
糊涂涂发布了新的文献求助10
22秒前
From完成签到,获得积分10
26秒前
Mountain发布了新的文献求助10
26秒前
HEROTREE完成签到,获得积分10
28秒前
32秒前
HEROTREE发布了新的文献求助10
34秒前
平常的三问完成签到 ,获得积分10
34秒前
Mountain完成签到,获得积分10
36秒前
38秒前
上官老黑完成签到 ,获得积分10
43秒前
banana完成签到 ,获得积分10
44秒前
48秒前
wang发布了新的文献求助10
53秒前
阿兹卡班完成签到 ,获得积分10
57秒前
1分钟前
樱桃猴子完成签到,获得积分10
1分钟前
万能图书馆应助黑纹采纳,获得10
1分钟前
1分钟前
QQQ完成签到,获得积分10
1分钟前
wanci应助孙行行采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
快乐的慕青完成签到,获得积分10
1分钟前
孙行行完成签到,获得积分10
1分钟前
一只熊完成签到 ,获得积分10
1分钟前
Pybiong完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
jiangchuansm完成签到,获得积分10
1分钟前
1分钟前
二小完成签到 ,获得积分10
1分钟前
七柱香发布了新的文献求助10
1分钟前
一只熊发布了新的文献求助10
1分钟前
iwaking完成签到,获得积分10
1分钟前
yyyyyy完成签到 ,获得积分10
1分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3275063
求助须知:如何正确求助?哪些是违规求助? 2914110
关于积分的说明 8371427
捐赠科研通 2584799
什么是DOI,文献DOI怎么找? 1407271
科研通“疑难数据库(出版商)”最低求助积分说明 656863
邀请新用户注册赠送积分活动 637301