虾青素
生物降解
甘油
细胞色素P450
化学
新陈代谢
脂质代谢
生物化学
食品科学
环境化学
类胡萝卜素
有机化学
作者
Xiang Wang,Zhonghong Zhang,Kuan-Kuan Yuan,Huiying Xu,Guohui He,Libin Yang,Joseph Buhagiar,Wei‐Dong Yang,Yalei Zhang,Carol Sze Ki Lin,Hongye Li
标识
DOI:10.1016/j.cej.2023.142770
摘要
Microalgae-based antibiotic removal treatment has attracted attention because of its low carbon and sustainable advantages. The microalgal co-metabolism system with a suitable carbon source leads to enhanced performance of pollutant removal. However, currently, limited knowledge is available for the removal of fluoroquinolone using a microalgae-mediated co-metabolism system. In this study, we first investigated that the biotic processes by alga Haematococcus lacustris in the co-metabolism system by adding glycerol would be the main contributors responsible for the removal of 10 mg/L ofloxacin (OFL) with the efficiency of 79.73% and the removal of 10 mg/L enrofloxacin (ENR) with the efficiency of 54.10%, respectively. Furthermore, we found that pyruvate from glycerol was converted into substrates and precursors, thereby resulting in the significant accumulations of microalgal astaxanthin and lipid. The astaxanthin content of H. lacustris was achieved at 4.81% and 4.69% treated with OFL and ENR in the presence of glycerol, with 16.04% and 14.55% of lipid content, respectively. The proposed metabolites and pathways were identified to plausibly explain the biodegradation of fluoroquinolone by H. lacustris. The molecular analyses demonstrated that cytochrome P450 (CYP450) enzymes are responsible for the biodegradation of fluoroquinolone, and it was further verified that fluoroquinolones might insert into CYP450 to finally form an efficient and tight binding conformation by molecular dynamic simulation. These findings provide a microalgae-based route for feasible and sustainable biodegradation of antibiotics using a co-metabolism strategy comprising glycerol as a carbon source, with the synergistic accumulation of valuable products.
科研通智能强力驱动
Strongly Powered by AbleSci AI