Product Aesthetic Design: A Machine Learning Augmentation

汽车工业 计算机科学 机器学习 产品(数学) 人工智能 自编码 人工神经网络 对抗制 新产品开发 过程(计算) 营销 工程类 业务 几何学 数学 航空航天工程 操作系统
作者
Alex Burnap,John R. Hauser,Artem Timoshenko
出处
期刊:Marketing Science [Institute for Operations Research and the Management Sciences]
卷期号:42 (6): 1029-1056 被引量:31
标识
DOI:10.1287/mksc.2022.1429
摘要

Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner—images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs—43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs. History: Puneet Manchanda served as the senior editor. Funding: A. Burnap received support from General Motors to partially fund a postdoctoral research position for the research conducted in this work. He certifies that none of the research or its results were censored or obfuscated in its publication. J. Hauser and A. Timoshenko certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Supplemental Material: The data files are available at https://doi.org/10.1287/mksc.2022.1429 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的芮发布了新的文献求助10
刚刚
明亮菀完成签到,获得积分10
1秒前
Zl完成签到,获得积分10
1秒前
xuzhiwei完成签到,获得积分10
2秒前
2秒前
加湿器发布了新的文献求助10
2秒前
囧囧完成签到,获得积分0
2秒前
3秒前
3秒前
潇洒的白昼完成签到,获得积分10
3秒前
庸人自扰发布了新的文献求助10
5秒前
5秒前
淀粉肠完成签到 ,获得积分10
5秒前
羽化成仙完成签到 ,获得积分10
5秒前
Patrick完成签到,获得积分10
5秒前
微微发布了新的文献求助10
6秒前
乐乐发布了新的文献求助10
7秒前
7秒前
方远锋发布了新的文献求助10
7秒前
爆米花应助王张李高采纳,获得10
7秒前
丹妮关注了科研通微信公众号
8秒前
科研通AI2S应助xin采纳,获得10
10秒前
10秒前
沙都学不会完成签到,获得积分10
10秒前
希希发布了新的文献求助10
11秒前
11秒前
11秒前
youyu完成签到,获得积分10
12秒前
Whatever完成签到,获得积分10
13秒前
13秒前
14秒前
小吴发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
苏靖完成签到,获得积分10
17秒前
着急的听南完成签到,获得积分10
18秒前
18秒前
zhangzhen发布了新的文献求助10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092