LUIE: Learnable physical model-guided underwater image enhancement with bi-directional unsupervised domain adaptation

水下 计算机科学 人工智能 光辉 基本事实 分割 一般化 计算机视觉 传输(电信) 图像分割 领域(数学分析) 遥感 电信 地质学 数学 数学分析 海洋学
作者
Jingyi Pan,Zeyu Duan,Jianghua Duan,Zhe Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:602: 128286-128286
标识
DOI:10.1016/j.neucom.2024.128286
摘要

Recently, learning-based underwater enhancement (UIE) methods have made considerable progress, significantly benefiting downstream tasks such as underwater semantic segmentation and underwater depth estimation. Most existing unsupervised UIE methods utilize the atmospheric image formation model to decompose underwater images into background color, transmission map, and scene radiance. However, they rely on simplified physical models for estimating the transmission map, over-simplifying its complex formation, which results in imprecise modeling of underwater scattering effects. Additionally, supervised UIE methods heavily depend on synthetic data or ground truth, leading to limited generalization capabilities due to the substantial domain gap presented in different underwater scenarios. To tackle these challenges, we propose a Learnable physical model-guided unsupervised domain adaptation framework for Underwater Image Enhancement, dubbed LUIE. LUIE learns to predict background light, depth, and scene radiance from an underwater image. We incorporate a learnable network to estimate the transmission map based on the predicted depth map. To minimize the inter-domain gap between synthetic and real underwater images, we introduce a bi-directional domain adaptation method that alternates the background light from each domain. Experimental results demonstrate the effectiveness of our proposed method compared to existing approaches, and high-level experiment results validate that our enhanced underwater results. Experiments in real-world settings on underwater ROVs platform with NVIDIA Jetson AGX Xavier further confirm the effectiveness and efficiency of our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢峥嵘发布了新的文献求助10
2秒前
balabala发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Violet应助科研通管家采纳,获得10
3秒前
4秒前
Violet应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
YY应助科研通管家采纳,获得30
4秒前
思源应助科研通管家采纳,获得10
4秒前
Violet应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
CodeCraft应助顾嘉兴采纳,获得10
6秒前
zZ关闭了zZ文献求助
8秒前
9秒前
YouziBa发布了新的文献求助10
9秒前
11秒前
jixuzhuixun发布了新的文献求助10
11秒前
balabala完成签到,获得积分10
13秒前
FashionBoy应助东郭以云采纳,获得10
13秒前
hbgcld发布了新的文献求助10
14秒前
平面猫完成签到,获得积分10
14秒前
16秒前
xihuanni发布了新的文献求助10
16秒前
sunshine应助林佳一采纳,获得10
16秒前
11完成签到,获得积分10
16秒前
爆米花应助谢峥嵘采纳,获得10
16秒前
老迟到的念双完成签到,获得积分10
19秒前
今后应助111采纳,获得10
19秒前
20秒前
子车茗应助激情的函采纳,获得30
21秒前
ttttttttt完成签到 ,获得积分10
21秒前
21秒前
11发布了新的文献求助10
22秒前
maomao1986发布了新的文献求助100
22秒前
23秒前
Hello应助jinying采纳,获得10
23秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349505
求助须知:如何正确求助?哪些是违规求助? 2975556
关于积分的说明 8669922
捐赠科研通 2656364
什么是DOI,文献DOI怎么找? 1454568
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663847