已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prismatic Trust: How Structural and Behavioral Signals in Networks Explain Trust Accumulation

业务 产业组织 计算机科学 营销 微观经济学 经济
作者
Giuseppe Soda,Aks Zaheer,Michael Park,Bill McEvily,Mani Subramani
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2021.02810
摘要

The predominant focus of the organizational literature on trust has been on direct interactions between actors. Whereas this emphasis has solidified our understanding of the dyadic foundations of trust, we know relatively little about the mechanisms of trust creation in network contexts. In this paper, we introduce the network mechanism of prismatic trust to explain why some actors are more trusted than others. Specifically, we posit that networks act as prisms that generate signals of trustworthiness based on not only actors’ positions in the social structure, but also their networking behavior. Moreover, we also theorize that the combination of signals from network structure and behavior amplifies trust accumulation in network actors. We test our predictions using data from an online social trading platform with more than 28,000 traders across 38 weeks. We find that traders who occupy positions of higher status in the network and those who express positive sentiments in the content of their communications (networking behaviors), accumulate more trustors. Furthermore, the positive effects of network status and the expression of positive sentiments on trust accumulation are mutually reinforcing. In sum, we contribute to the organizational literature on trust by proposing the role of a prismatic view in explaining how trust accumulates in network actors as a function of their position in social structure, their networking behavior, and a combination of the two. This paper was accepted by Isabel Fernandez-Mateo, organizations. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02810 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
Lu_ckilly发布了新的文献求助10
4秒前
lalala完成签到,获得积分10
5秒前
7秒前
邓力发布了新的文献求助10
13秒前
小付完成签到,获得积分10
18秒前
02发布了新的文献求助10
20秒前
科研通AI5应助硕小牛采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
程程发布了新的文献求助10
30秒前
32秒前
wang5945完成签到 ,获得积分10
34秒前
李健的小迷弟应助李李采纳,获得10
36秒前
量子星尘发布了新的文献求助10
39秒前
dax大雄完成签到 ,获得积分10
40秒前
42秒前
jfaioe完成签到,获得积分10
42秒前
学不死就往死里学关注了科研通微信公众号
43秒前
斯文败类应助炸年糕老彭采纳,获得10
44秒前
45秒前
tjnksy完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
鲤角兽完成签到,获得积分10
47秒前
ceeray23发布了新的文献求助50
47秒前
Jasper应助Louise采纳,获得10
48秒前
李李发布了新的文献求助10
49秒前
李健的小迷弟应助小付采纳,获得10
51秒前
51秒前
55秒前
56秒前
快乐冰之发布了新的文献求助50
56秒前
量子星尘发布了新的文献求助10
58秒前
李李完成签到,获得积分20
59秒前
mmmmk完成签到,获得积分10
59秒前
1分钟前
xhylalalala发布了新的文献求助10
1分钟前
1分钟前
苇一完成签到,获得积分10
1分钟前
Wang_JN完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185