化学
光异构化
光催化
光化学
共价键
氢
有机化学
异构化
催化作用
标识
DOI:10.1002/cjoc.202400437
摘要
Comprehensive Summary Covalent organic framework (COF) is a desirable platform to tailor electronic properties for improving photocatalytic performances. However, the study on excited‐state configurations that determine photogenerated carrier dynamics has long been neglected. Herein, we concentrate on the molecular design of β‐ketoenamine‐linked COFs to drive their photoisomerization via the excited‐state intra‐molecular proton transfer (ESIPT), which can induce the partial keto‐to‐enol tautomerization and accordingly rearrange the photoinduced charge distribution. We demonstrate that the push‐pull electronic effect of functional side groups attached on the framework linkers is directly correlated with the ESIPT process. The phenylene linkers modified with electron‐withdrawing cyano‐groups reinforce the ESIPT‐induced tautomerization, leading to the in situ partial enolization for extended π‐conjugation and rearranged electron‐hole distribution. In contrast, the electron‐rich linkers limit the photoisomerization of COF and suppress the photoinduced electron accumulation. Thus, the maximum hydrogen evolution rate is achieved by the cyano‐modified COF, reaching as high as 162.72 mmol·g –1 ·h –1 with an apparent quantum efficiency of 13.44% at 475 nm, which is almost 11.5‐fold higher than those of analogous COFs with electron‐rich linkers. Our work opens up an avenue to control over the excited‐state structure transformation for enhanced photochemical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI