Ultrasound-Based Radiomics for Predicting the WHO/ISUP Grading of Clear-Cell Renal Cell Carcinoma

无线电技术 医学 超声波 肾细胞癌 分级(工程) 放射科 肿瘤科 生物 生态学
作者
Yue-Fan Chen,Fen Fu,Jia-Jing Zhuang,Wenting Zheng,Yifan Zhu,Guang-Tian Lian,Xiaoqing Fan,Huiping Zhang,Qin Ye
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (11): 1619-1627 被引量:7
标识
DOI:10.1016/j.ultrasmedbio.2024.06.004
摘要

Objective To explore the performance of ultrasound image-based radiomics in predicting World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of clear-cell renal cell carcinoma (ccRCC). Methods A retrospective study was conducted via histopathological examination on participants with ccRCC from January 2021 to August 2023. Participants were randomly allocated to a training set and a validation set in a 3:1 ratio. The maximum cross-sectional image of the lesion on the preoperative ultrasound image was obtained, with the region of interest (ROI) delineated manually. Radiomic features were computed from the ROIs and subsequently normalized using Z-scores. Wilcoxon test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature reduction and model development. The performance of the model was estimated by indicators including area under the curve (AUC), sensitivity and specificity. Results A total of 336 participants (median age, 57 y; 106 women) with ccRCC were finally included, of whom 243 had low-grade tumors (grade 1–2) and 93 had high-grade tumors (grade 3–4). A total of 1163 radiomic features were extracted from the ROIs for model construction and 117 informative radiomics features selected by Wilcoxon test were submitted to LASSO. Our ultrasound-based radiomics model included 51 features and achieved AUCs of 0.90 and 0.79 for the training and validation sets, respectively. Within the training set, the sensitivity and specificity measured 0.75 and 0.92, respectively, whereas in the validation set, the sensitivity and specificity measured 0.65 and 0.84, respectively. In the subgroup analysis, for the training and validation sets Philips AUCs were 0.91 and 0.75, Toshiba AUCs were 0.82 and 0.90, and General Electric AUCs were 0.95 and 0.82, respectively. Conclusion Ultrasound-based radiomics can effectively predict the WHO/ISUP grading of ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助amazeman111采纳,获得10
1秒前
1秒前
张沐泽完成签到,获得积分10
1秒前
ee完成签到,获得积分10
2秒前
Ava应助yyyyy语言采纳,获得10
3秒前
淡然千山完成签到 ,获得积分10
3秒前
芋泥啵啵发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
陈敏娇完成签到,获得积分10
6秒前
晟至完成签到,获得积分10
6秒前
6秒前
6秒前
仄言发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
陈敏娇发布了新的文献求助10
9秒前
gh完成签到,获得积分10
10秒前
yaruyou发布了新的文献求助10
11秒前
1234发布了新的文献求助10
11秒前
乐乐应助科研菜狗采纳,获得10
12秒前
13秒前
14秒前
充电宝应助hinata采纳,获得10
14秒前
量子星尘发布了新的文献求助10
20秒前
cqsjy完成签到,获得积分10
21秒前
21秒前
认真柠檬完成签到,获得积分10
22秒前
23秒前
Owen应助蟑先生采纳,获得10
23秒前
Maestro_S应助内向的绿采纳,获得10
24秒前
ding应助头哥采纳,获得20
27秒前
科研通AI6.1应助苏yj采纳,获得10
27秒前
蟑先生完成签到 ,获得积分10
30秒前
30秒前
Hus11221完成签到,获得积分10
33秒前
丘比特应助Lignin采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601