Ultrasound-Based Radiomics for Predicting the WHO/ISUP Grading of Clear-Cell Renal Cell Carcinoma

无线电技术 医学 超声波 肾细胞癌 分级(工程) 放射科 肿瘤科 生物 生态学
作者
Yue-Fan Chen,Fen Fu,Jia-Jing Zhuang,Wenting Zheng,Yifan Zhu,Guang-Tian Lian,Xiaoqing Fan,Huiping Zhang,Qin Ye
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (11): 1619-1627 被引量:7
标识
DOI:10.1016/j.ultrasmedbio.2024.06.004
摘要

Objective To explore the performance of ultrasound image-based radiomics in predicting World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of clear-cell renal cell carcinoma (ccRCC). Methods A retrospective study was conducted via histopathological examination on participants with ccRCC from January 2021 to August 2023. Participants were randomly allocated to a training set and a validation set in a 3:1 ratio. The maximum cross-sectional image of the lesion on the preoperative ultrasound image was obtained, with the region of interest (ROI) delineated manually. Radiomic features were computed from the ROIs and subsequently normalized using Z-scores. Wilcoxon test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature reduction and model development. The performance of the model was estimated by indicators including area under the curve (AUC), sensitivity and specificity. Results A total of 336 participants (median age, 57 y; 106 women) with ccRCC were finally included, of whom 243 had low-grade tumors (grade 1–2) and 93 had high-grade tumors (grade 3–4). A total of 1163 radiomic features were extracted from the ROIs for model construction and 117 informative radiomics features selected by Wilcoxon test were submitted to LASSO. Our ultrasound-based radiomics model included 51 features and achieved AUCs of 0.90 and 0.79 for the training and validation sets, respectively. Within the training set, the sensitivity and specificity measured 0.75 and 0.92, respectively, whereas in the validation set, the sensitivity and specificity measured 0.65 and 0.84, respectively. In the subgroup analysis, for the training and validation sets Philips AUCs were 0.91 and 0.75, Toshiba AUCs were 0.82 and 0.90, and General Electric AUCs were 0.95 and 0.82, respectively. Conclusion Ultrasound-based radiomics can effectively predict the WHO/ISUP grading of ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芸沐发布了新的文献求助10
刚刚
nisha发布了新的文献求助10
刚刚
傲娇十八发布了新的文献求助10
1秒前
王彦林发布了新的文献求助10
1秒前
阳光水绿发布了新的文献求助10
1秒前
SciGPT应助认真初之采纳,获得30
1秒前
1秒前
JY发布了新的文献求助10
1秒前
乒哩乓拉完成签到,获得积分10
2秒前
柑橘乌云完成签到,获得积分10
2秒前
2秒前
2秒前
雷小牛发布了新的文献求助10
3秒前
3秒前
3秒前
落后的小伙完成签到,获得积分10
3秒前
佐伊发布了新的文献求助50
3秒前
FashionBoy应助DamonChen采纳,获得10
3秒前
小任发布了新的文献求助10
4秒前
liang发布了新的文献求助10
4秒前
LELE完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI2S应助叮当喵采纳,获得10
4秒前
清秀寄风完成签到,获得积分10
4秒前
5秒前
5秒前
zyq发布了新的文献求助10
5秒前
6秒前
ccm应助zpp采纳,获得10
6秒前
楊書銘完成签到,获得积分10
6秒前
6秒前
蒋若风发布了新的文献求助10
6秒前
叶液发布了新的文献求助10
6秒前
复杂易巧发布了新的文献求助10
7秒前
7秒前
LELE发布了新的文献求助10
7秒前
szc发布了新的文献求助10
7秒前
斯文败类应助叶子采纳,获得10
7秒前
思源应助雨雨雨采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836