Ultrasound-Based Radiomics for Predicting the WHO/ISUP Grading of Clear-Cell Renal Cell Carcinoma

无线电技术 医学 超声波 肾细胞癌 分级(工程) 放射科 肿瘤科 生物 生态学
作者
Yue-Fan Chen,Fen Fu,Jia-Jing Zhuang,Wenting Zheng,Yifan Zhu,Guang-Tian Lian,Xiaoqing Fan,Huiping Zhang,Qin Ye
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:50 (11): 1619-1627 被引量:7
标识
DOI:10.1016/j.ultrasmedbio.2024.06.004
摘要

Objective To explore the performance of ultrasound image-based radiomics in predicting World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of clear-cell renal cell carcinoma (ccRCC). Methods A retrospective study was conducted via histopathological examination on participants with ccRCC from January 2021 to August 2023. Participants were randomly allocated to a training set and a validation set in a 3:1 ratio. The maximum cross-sectional image of the lesion on the preoperative ultrasound image was obtained, with the region of interest (ROI) delineated manually. Radiomic features were computed from the ROIs and subsequently normalized using Z-scores. Wilcoxon test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature reduction and model development. The performance of the model was estimated by indicators including area under the curve (AUC), sensitivity and specificity. Results A total of 336 participants (median age, 57 y; 106 women) with ccRCC were finally included, of whom 243 had low-grade tumors (grade 1–2) and 93 had high-grade tumors (grade 3–4). A total of 1163 radiomic features were extracted from the ROIs for model construction and 117 informative radiomics features selected by Wilcoxon test were submitted to LASSO. Our ultrasound-based radiomics model included 51 features and achieved AUCs of 0.90 and 0.79 for the training and validation sets, respectively. Within the training set, the sensitivity and specificity measured 0.75 and 0.92, respectively, whereas in the validation set, the sensitivity and specificity measured 0.65 and 0.84, respectively. In the subgroup analysis, for the training and validation sets Philips AUCs were 0.91 and 0.75, Toshiba AUCs were 0.82 and 0.90, and General Electric AUCs were 0.95 and 0.82, respectively. Conclusion Ultrasound-based radiomics can effectively predict the WHO/ISUP grading of ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力完成签到,获得积分10
刚刚
1秒前
小娜完成签到,获得积分20
1秒前
Soledad完成签到 ,获得积分10
1秒前
FashionBoy应助junjun采纳,获得10
1秒前
王大雪完成签到,获得积分10
2秒前
2秒前
扎克发布了新的文献求助10
2秒前
内向煎蛋发布了新的文献求助10
3秒前
甘草发布了新的文献求助10
4秒前
6666666666完成签到 ,获得积分10
4秒前
civy发布了新的文献求助10
4秒前
傲娇的小松鼠完成签到 ,获得积分10
4秒前
Stageruner完成签到,获得积分10
4秒前
zhangkx23完成签到,获得积分10
4秒前
5秒前
俊俊完成签到,获得积分10
5秒前
5秒前
6秒前
顾矜应助甲乙丙丁采纳,获得10
7秒前
咯噔完成签到,获得积分10
7秒前
科研通AI6应助powerli采纳,获得10
8秒前
222333发布了新的文献求助10
8秒前
微笑奇迹发布了新的文献求助10
9秒前
沐寒完成签到,获得积分10
9秒前
xiaojie完成签到 ,获得积分10
9秒前
10秒前
科研通AI6应助terryok采纳,获得10
10秒前
Jasper应助sugkook采纳,获得10
10秒前
10秒前
张豪杰发布了新的文献求助10
11秒前
12秒前
一二发布了新的文献求助10
12秒前
Jager.Z发布了新的文献求助10
13秒前
1nnoy发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
紫焰完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728