清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 经济增长 工程类 经济 电压
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124763-124763 被引量:1
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuju完成签到,获得积分10
15秒前
Gydl完成签到,获得积分10
23秒前
简单完成签到 ,获得积分10
28秒前
40秒前
研友_nxw2xL完成签到,获得积分10
45秒前
muriel完成签到,获得积分0
51秒前
dream完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
1分钟前
yeye发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
追风完成签到,获得积分10
1分钟前
yeye完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
rayjin完成签到,获得积分10
2分钟前
苗苗完成签到 ,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
4分钟前
四氧化三铁完成签到,获得积分10
4分钟前
4分钟前
5分钟前
PeterLin完成签到,获得积分10
5分钟前
鲤鱼不言发布了新的文献求助10
5分钟前
5分钟前
虚心的飞鸟完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
不安的晓灵完成签到 ,获得积分10
7分钟前
紫熊完成签到,获得积分10
7分钟前
7分钟前
Nancy0818完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
zzz发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596614
求助须知:如何正确求助?哪些是违规求助? 4008465
关于积分的说明 12409239
捐赠科研通 3687520
什么是DOI,文献DOI怎么找? 2032461
邀请新用户注册赠送积分活动 1065692
科研通“疑难数据库(出版商)”最低求助积分说明 950996