亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 工程类 电压 经济 经济增长
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124763-124763 被引量:1
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助甜美的起眸采纳,获得10
5秒前
ZTLlele完成签到 ,获得积分10
15秒前
16秒前
大个应助南草北树采纳,获得10
28秒前
可靠诗筠完成签到 ,获得积分10
50秒前
SciGPT应助Efaith采纳,获得10
52秒前
54秒前
zhou发布了新的文献求助10
1分钟前
千早爱音应助科研通管家采纳,获得20
1分钟前
YU完成签到 ,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
Efaith发布了新的文献求助10
1分钟前
Efaith完成签到,获得积分20
1分钟前
dddd完成签到,获得积分10
1分钟前
青柚完成签到 ,获得积分10
2分钟前
星辰大海应助xiaoxiao采纳,获得10
2分钟前
2分钟前
2分钟前
阿巴阿巴发布了新的文献求助30
2分钟前
子平完成签到 ,获得积分0
2分钟前
灵剑山完成签到 ,获得积分10
2分钟前
yf完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
千早爱音应助科研通管家采纳,获得20
3分钟前
思源应助研友_8RyzBZ采纳,获得10
3分钟前
3分钟前
Zefinity完成签到,获得积分10
3分钟前
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
研友_8RyzBZ完成签到,获得积分20
3分钟前
卧镁铀钳完成签到 ,获得积分10
3分钟前
阿巴阿巴完成签到,获得积分10
3分钟前
3分钟前
外向的涛完成签到,获得积分10
4分钟前
5分钟前
张六六完成签到 ,获得积分10
5分钟前
千早爱音应助科研通管家采纳,获得20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770