Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 经济增长 工程类 经济 电压
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124763-124763
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木槿花难开完成签到,获得积分10
2秒前
小巧念寒完成签到,获得积分10
5秒前
玉ER完成签到,获得积分10
7秒前
希望天下0贩的0应助wei采纳,获得10
7秒前
北枳完成签到 ,获得积分10
11秒前
地精术士完成签到,获得积分10
12秒前
浙江嘉兴完成签到,获得积分10
12秒前
我是站长才怪应助通~采纳,获得10
14秒前
shiyu完成签到,获得积分10
14秒前
Herman_Chen完成签到,获得积分10
21秒前
Zn应助牛文文采纳,获得10
23秒前
23秒前
24秒前
贤惠的白开水完成签到 ,获得积分10
24秒前
英姑应助林林林采纳,获得10
25秒前
科研小民工应助Anquan采纳,获得30
25秒前
cyt9999发布了新的文献求助10
26秒前
天天快乐应助好难啊采纳,获得10
27秒前
干净的烧鹅完成签到,获得积分10
28秒前
29秒前
29秒前
在人中发布了新的文献求助10
30秒前
30秒前
fls221完成签到,获得积分10
31秒前
Laity完成签到,获得积分10
33秒前
33秒前
健忘捕发布了新的文献求助10
33秒前
林林林发布了新的文献求助10
34秒前
ok完成签到 ,获得积分10
35秒前
乐乐应助wewe采纳,获得30
35秒前
35秒前
拥有八根情丝完成签到 ,获得积分10
36秒前
科研通AI5应助Rex采纳,获得10
37秒前
38秒前
情怀应助樱桃小丸子采纳,获得10
39秒前
好难啊发布了新的文献求助10
40秒前
40秒前
44秒前
45秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851