Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 经济增长 工程类 经济 电压
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124763-124763 被引量:1
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助碗碗豆喵采纳,获得20
1秒前
XY丨发布了新的文献求助10
1秒前
1秒前
qiuxu完成签到,获得积分10
1秒前
JJ完成签到,获得积分10
2秒前
pipi完成签到,获得积分10
3秒前
3秒前
撒旦asd完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
lili完成签到 ,获得积分10
4秒前
火柴盒发布了新的文献求助10
6秒前
如意慕蕊发布了新的文献求助10
6秒前
为你比拟发布了新的文献求助10
7秒前
核桃发布了新的文献求助10
8秒前
8秒前
英俊的铭应助伍次友采纳,获得10
9秒前
游泳的酸菜铺盖面完成签到,获得积分10
10秒前
哇芽完成签到,获得积分10
10秒前
bkagyin应助可耐的靖采纳,获得10
11秒前
三杠完成签到 ,获得积分10
12秒前
Jasper应助糊涂的康采纳,获得10
12秒前
白鹭完成签到,获得积分10
12秒前
HMLM完成签到,获得积分10
13秒前
sunshine完成签到,获得积分10
13秒前
jie结发布了新的文献求助10
13秒前
小二郎应助为你比拟采纳,获得10
13秒前
xiaoxixixier完成签到 ,获得积分10
13秒前
欢喜德天发布了新的文献求助10
14秒前
苞大米完成签到,获得积分10
15秒前
17秒前
汉堡包应助如意慕蕊采纳,获得100
17秒前
18秒前
向雨竹完成签到,获得积分10
18秒前
18秒前
椛鈊完成签到,获得积分10
19秒前
含糊的初瑶关注了科研通微信公众号
19秒前
pipi发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434330
求助须知:如何正确求助?哪些是违规求助? 4546609
关于积分的说明 14203388
捐赠科研通 4466564
什么是DOI,文献DOI怎么找? 2448190
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945