Micro-expression recognition based on a novel GCN-transformer cooperation model for IoT-eHealth

电子健康 计算机科学 物联网 变压器 嵌入式系统 医疗保健 电气工程 工程类 电压 经济 经济增长
作者
Daxiang Li,Nannan Qiao,Xingcheng Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124763-124763
标识
DOI:10.1016/j.eswa.2024.124763
摘要

If a person is truly healthy, his/her well-being encompasses both physical and psychological health. However, the existing IoT-eHealth system typically focus only on monitoring the user's physical data through various sensors, neglecting their mental state. To enhance the intelligence level of IoT-eHealth system and enable it to have the psychological monitoring ability, a novel collaborative model based on Graph Convolutional Network (GCN) and Transformer is designed for Micro-Expression (ME) recognition in this paper. Firstly, facial information within each frame is transformed into a Spatial Topological Relationship Graph (STRG) by using facial landmarks detection and psychological relationship of local patches. Then, in order to automatically aggregate the key information on facial patches that contribute to ME recognition from the structured graph data, a Hierarchical Adaptive Graph Pooling (HAGP) module is designed for obtaining discriminative frame-level feature based on GCN utilizing graph structure and vertex global dependencies. Finally, in order to model the long-term dependencies among frames and capture the key frame-level features that are beneficial for ME recognition, a Temporal Sensitive Self-Attention (TSSA) mechanism is designed, and a novel Temporal Sensitive Transformer (TST) encoder is constructed based on TSSA to explore the evolution law of facial patterns and obtain discriminative video-level features that are helpful for ME recognition. In the comparative experiments of standard dataset verification and practical dataset testing, designed collaborative model is superior to other methods and can achieve the highest recognition accuracy, which almost can meet the application requirements of IoT-eHealth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18922406869发布了新的文献求助30
3秒前
灵零铃发布了新的文献求助10
4秒前
欣喜的不惜完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
小吴shz完成签到,获得积分10
8秒前
woyufengtian完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
大模型应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
啊哒吸哇完成签到,获得积分10
10秒前
关北落小强完成签到,获得积分20
11秒前
dyyy完成签到,获得积分10
11秒前
nnnny发布了新的文献求助10
12秒前
13秒前
参宿七完成签到,获得积分10
13秒前
13秒前
13秒前
Hello应助naivete采纳,获得10
14秒前
CipherSage应助研猫采纳,获得10
15秒前
高兴山兰完成签到,获得积分10
15秒前
景辣条完成签到,获得积分10
15秒前
uwu完成签到,获得积分20
15秒前
雅悦发布了新的文献求助10
16秒前
SciGPT应助hanzhang采纳,获得10
17秒前
冷傲的灵安完成签到,获得积分10
17秒前
科研通AI2S应助腼腆的又槐采纳,获得10
20秒前
炝拌维C发布了新的文献求助10
20秒前
碧蓝玉米完成签到 ,获得积分10
22秒前
科研通AI2S应助体贴的薯片采纳,获得10
23秒前
23秒前
竹筏过海应助qzzj采纳,获得50
23秒前
景辣条发布了新的文献求助10
24秒前
24秒前
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530