亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review

高光谱成像 鉴定(生物学) 人工智能 计算机科学 作物 图像(数学) 模式识别(心理学) 机器学习 计算机视觉 农学 生物 植物
作者
Yimy Edisson García Vera,Mauricio Andrés Polochè Arango,Camilo A. Mendivelso-Fajardo,Félix Julián Gutiérrez-Bernal
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (14): 6064-6064 被引量:4
标识
DOI:10.3390/su16146064
摘要

Originally, the use of hyperspectral images was for military applications, but their use has been extended to precision agriculture. In particular, they are used for activities related to crop classification or disease detection, combining these hyperspectral images with machine learning techniques and algorithms. The study of hyperspectral images has a wide range of wavelengths for observation. These wavelengths allow for monitoring agricultural crops such as cereals, oilseeds, vegetables, and fruits, and other applications. In the ranges of these wavelengths, crop conditions such as maturity index and nutrient status, or the early detection of some diseases that cause losses in crops, can be studied and diagnosed. Therefore, this article proposes a technical review of the main applications of hyperspectral images in agricultural crops and perspectives and challenges that combine artificial intelligence algorithms such as machine learning and deep learning in the classification and detection of diseases of crops such as cereals, oilseeds, fruits, and vegetables. A systematic review of the scientific literature was carried out using a 10-year observation window to determine the evolution of the integration of these technological tools that support sustainable agriculture; among the findings, information on the most documented crops is highlighted, among which are some cereals and citrus fruits due to their high demand and large cultivation areas, as well as information on the main fruits and vegetables that are integrating these technologies. Also, the main artificial intelligence algorithms that are being worked on are summarized and classified, as well as the wavelength ranges for the prediction, disease detection, and analysis of other tasks of physiological characteristics used for sustainable production. This review can be useful as a reference for future research, based mainly on detection, classification, and other tasks in agricultural crops and decision making, to implement the most appropriate artificial intelligence algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
22秒前
CWY发布了新的文献求助10
27秒前
寒战完成签到 ,获得积分10
31秒前
Maru发布了新的文献求助10
40秒前
50秒前
英俊的铭应助科研通管家采纳,获得10
50秒前
Maru完成签到,获得积分10
50秒前
感动的友容完成签到,获得积分10
51秒前
wykion完成签到,获得积分10
1分钟前
1分钟前
usrcu完成签到 ,获得积分10
1分钟前
白菜兔子完成签到 ,获得积分10
1分钟前
hnsun21发布了新的文献求助10
1分钟前
刘丽忠发布了新的文献求助20
1分钟前
hxksxc完成签到 ,获得积分10
1分钟前
李健应助哭泣的丝采纳,获得10
1分钟前
刘丽忠完成签到,获得积分10
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
1分钟前
VDC应助可爱的大树采纳,获得30
1分钟前
1分钟前
1分钟前
好奇宝宝发布了新的文献求助10
1分钟前
传奇3应助Jing采纳,获得10
2分钟前
科研通AI2S应助俊逸的刺猬采纳,获得10
2分钟前
momo完成签到,获得积分10
2分钟前
科研通AI2S应助好奇宝宝采纳,获得10
2分钟前
nenoaowu发布了新的文献求助10
2分钟前
隐形曼青应助chenzhuod采纳,获得10
2分钟前
ronnie147完成签到 ,获得积分10
2分钟前
zzz完成签到,获得积分20
2分钟前
2分钟前
ZZZ完成签到 ,获得积分10
2分钟前
zzz发布了新的文献求助20
2分钟前
斯文败类应助炙心采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241796
求助须知:如何正确求助?哪些是违规求助? 2886272
关于积分的说明 8242549
捐赠科研通 2554828
什么是DOI,文献DOI怎么找? 1382971
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625382