Critically Reckoning Spectrophotometric Detection of Asymptomatic Cyanotoxins and Faecal Contamination in Periurban Agrarian Ecosystems via Convolutional Neural Networks

污染 农业社会 卷积神经网络 无症状的 生态系统 环境科学 人工智能 生物 生态学 计算机科学 医学 内科学 农业
作者
Soumyajit Koley
出处
期刊:Trends in Sciences [College of Graduate Studies, Walailak University]
卷期号:21 (12): 8528-8528 被引量:12
标识
DOI:10.48048/tis.2024.8528
摘要

Based on a systematic review of convolutional neural networks (CNN), this study explores the efficacy of small imaging sensors in monitoring the real-time presence of cyanotoxins and hazardous contaminants in urban ecosystems. To develop a machine learning-based CNN, this study first investigated the relationships between the prevalence of hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in waterways and aquifers of certain semi-arid zones of Sri Lanka, Sweden and New York (United States). By incorporating a popularly known AbspectroscoPY framework to effectively process the spectrophotometric data of the obtained samples, the formulation subsequently reveals strong positive correlations between FIB coliforms and nutrient loads (particularly nitrate and phosphate). A corroborative association with the incidence of chronic kidney disease of uncertain aetiology (CKDu) among the residents of the studied regions further affirms the reliability of the methodology. These findings underline the need for policymakers to consider the geographical and land-use traits of urban habitats in strategies aimed at reducing water-borne health hazards. HIGHLIGHTS This study examines the link between hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in the semi-arid habitats of Sri Lanka, Sweden, and New York, USA. Quantitative Phase Imaging based on a convolutional neural network (CNN) model helps monitor cyanobacterial incursions in peri-urban agrarian ecosystems. AbspectroscoPY-enabled spectrophotometric data analysis reveals strong positive correlations between the prevalence of FIB coliforms and nutrient loads, particularly those of nitrates and phosphates. Reliability of proposed machine learning-based CNNs is validated by the corroborative incidences of chronic kidney diseases among residents of the studied regions. GRAPHICAL ABSTRACT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mufcyang完成签到,获得积分10
1秒前
了晨完成签到 ,获得积分10
2秒前
yi完成签到 ,获得积分10
5秒前
wxnice完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
星辰大海应助大橙子采纳,获得10
17秒前
17秒前
七QI完成签到 ,获得积分10
18秒前
21秒前
褚香旋完成签到,获得积分10
21秒前
一只狗东西完成签到 ,获得积分10
23秒前
宇老师发布了新的文献求助10
24秒前
25秒前
qiqi发布了新的文献求助30
27秒前
大橙子发布了新的文献求助10
30秒前
wzhang完成签到,获得积分10
31秒前
ken131完成签到 ,获得积分10
34秒前
myl完成签到,获得积分10
35秒前
728完成签到,获得积分10
41秒前
xiaofeng5838完成签到,获得积分10
41秒前
ronnie完成签到,获得积分10
41秒前
44秒前
寒冷芷蕊完成签到,获得积分20
44秒前
44秒前
Jane完成签到,获得积分10
44秒前
一氧化二氢完成签到,获得积分10
50秒前
凡事发生必有利于我完成签到,获得积分10
51秒前
yihaiqin完成签到 ,获得积分10
55秒前
轩辕剑身完成签到,获得积分0
55秒前
coolkid完成签到 ,获得积分0
56秒前
你怎么那么美完成签到,获得积分10
56秒前
游艺完成签到 ,获得积分10
59秒前
冬月完成签到 ,获得积分10
59秒前
薛乎虚完成签到 ,获得积分10
1分钟前
1分钟前
大胖完成签到,获得积分10
1分钟前
野火197完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
April完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022