Critically Reckoning Spectrophotometric Detection of Asymptomatic Cyanotoxins and Faecal Contamination in Periurban Agrarian Ecosystems via Convolutional Neural Networks

污染 农业社会 卷积神经网络 无症状的 生态系统 环境科学 人工智能 生物 生态学 计算机科学 医学 内科学 农业
作者
Soumyajit Koley
出处
期刊:Trends in Sciences [College of Graduate Studies, Walailak University]
卷期号:21 (12): 8528-8528 被引量:1
标识
DOI:10.48048/tis.2024.8528
摘要

Based on a systematic review of convolutional neural networks (CNN), this study explores the efficacy of small imaging sensors in monitoring the real-time presence of cyanotoxins and hazardous contaminants in urban ecosystems. To develop a machine learning-based CNN, this study first investigated the relationships between the prevalence of hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in waterways and aquifers of certain semi-arid zones of Sri Lanka, Sweden and New York (United States). By incorporating a popularly known AbspectroscoPY framework to effectively process the spectrophotometric data of the obtained samples, the formulation subsequently reveals strong positive correlations between FIB coliforms and nutrient loads (particularly nitrate and phosphate). A corroborative association with the incidence of chronic kidney disease of uncertain aetiology (CKDu) among the residents of the studied regions further affirms the reliability of the methodology. These findings underline the need for policymakers to consider the geographical and land-use traits of urban habitats in strategies aimed at reducing water-borne health hazards. HIGHLIGHTS This study examines the link between hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in the semi-arid habitats of Sri Lanka, Sweden, and New York, USA. Quantitative Phase Imaging based on a convolutional neural network (CNN) model helps monitor cyanobacterial incursions in peri-urban agrarian ecosystems. AbspectroscoPY-enabled spectrophotometric data analysis reveals strong positive correlations between the prevalence of FIB coliforms and nutrient loads, particularly those of nitrates and phosphates. Reliability of proposed machine learning-based CNNs is validated by the corroborative incidences of chronic kidney diseases among residents of the studied regions. GRAPHICAL ABSTRACT

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI驳回了胡子木应助
刚刚
刘十三完成签到,获得积分10
刚刚
小马甲应助稳重向南采纳,获得10
刚刚
xrf完成签到,获得积分10
2秒前
江枫完成签到 ,获得积分10
3秒前
3秒前
细腻的宫二完成签到,获得积分10
3秒前
幽默泥猴桃完成签到,获得积分10
4秒前
wlqc完成签到,获得积分10
5秒前
5秒前
yjzzz完成签到,获得积分10
5秒前
xiaolingc完成签到,获得积分10
5秒前
longjie完成签到,获得积分10
7秒前
144完成签到 ,获得积分10
8秒前
11111发布了新的文献求助10
8秒前
两院候选人应助家鹭洋采纳,获得10
8秒前
lsq发布了新的文献求助10
9秒前
白衣修身完成签到,获得积分10
9秒前
张大忽悠完成签到,获得积分10
9秒前
9秒前
hello完成签到 ,获得积分10
10秒前
老邱完成签到,获得积分10
10秒前
哒哒完成签到,获得积分10
11秒前
高贵绿真完成签到 ,获得积分10
11秒前
道明嗣完成签到 ,获得积分10
11秒前
张小陈完成签到 ,获得积分10
12秒前
吉羿发布了新的文献求助10
12秒前
12秒前
wanwei完成签到,获得积分10
13秒前
科研通AI2S应助SciEngineerX采纳,获得10
13秒前
14秒前
bazinga应助阮煜城采纳,获得10
14秒前
典雅威完成签到,获得积分10
14秒前
14秒前
张大忽悠发布了新的文献求助10
14秒前
路瑶瑶完成签到,获得积分10
14秒前
maorongfu456完成签到,获得积分10
15秒前
orange完成签到 ,获得积分10
15秒前
ztt27999完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311457
求助须知:如何正确求助?哪些是违规求助? 2944239
关于积分的说明 8518079
捐赠科研通 2619580
什么是DOI,文献DOI怎么找? 1432472
科研通“疑难数据库(出版商)”最低求助积分说明 664671
邀请新用户注册赠送积分活动 649869