Critically Reckoning Spectrophotometric Detection of Asymptomatic Cyanotoxins and Faecal Contamination in Periurban Agrarian Ecosystems via Convolutional Neural Networks

污染 农业社会 卷积神经网络 无症状的 生态系统 环境科学 人工智能 生物 生态学 计算机科学 医学 内科学 农业
作者
Soumyajit Koley
出处
期刊:Trends in Sciences [College of Graduate Studies, Walailak University]
卷期号:21 (12): 8528-8528 被引量:12
标识
DOI:10.48048/tis.2024.8528
摘要

Based on a systematic review of convolutional neural networks (CNN), this study explores the efficacy of small imaging sensors in monitoring the real-time presence of cyanotoxins and hazardous contaminants in urban ecosystems. To develop a machine learning-based CNN, this study first investigated the relationships between the prevalence of hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in waterways and aquifers of certain semi-arid zones of Sri Lanka, Sweden and New York (United States). By incorporating a popularly known AbspectroscoPY framework to effectively process the spectrophotometric data of the obtained samples, the formulation subsequently reveals strong positive correlations between FIB coliforms and nutrient loads (particularly nitrate and phosphate). A corroborative association with the incidence of chronic kidney disease of uncertain aetiology (CKDu) among the residents of the studied regions further affirms the reliability of the methodology. These findings underline the need for policymakers to consider the geographical and land-use traits of urban habitats in strategies aimed at reducing water-borne health hazards. HIGHLIGHTS This study examines the link between hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in the semi-arid habitats of Sri Lanka, Sweden, and New York, USA. Quantitative Phase Imaging based on a convolutional neural network (CNN) model helps monitor cyanobacterial incursions in peri-urban agrarian ecosystems. AbspectroscoPY-enabled spectrophotometric data analysis reveals strong positive correlations between the prevalence of FIB coliforms and nutrient loads, particularly those of nitrates and phosphates. Reliability of proposed machine learning-based CNNs is validated by the corroborative incidences of chronic kidney diseases among residents of the studied regions. GRAPHICAL ABSTRACT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好宝宝完成签到,获得积分10
刚刚
3237924531发布了新的文献求助10
1秒前
hdy331完成签到,获得积分10
1秒前
完美世界应助123采纳,获得10
2秒前
2秒前
怕孤独的忆南完成签到,获得积分10
4秒前
追风完成签到 ,获得积分10
5秒前
5秒前
yao完成签到,获得积分10
5秒前
常芹发布了新的文献求助10
6秒前
ED应助科研路漫漫采纳,获得10
6秒前
7秒前
布鲁克完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
今后应助朴实的绣连采纳,获得30
9秒前
<小天才>发布了新的文献求助10
11秒前
11秒前
12秒前
Smy完成签到 ,获得积分10
12秒前
在水一方应助梁晓雯采纳,获得10
13秒前
Yy123发布了新的文献求助10
13秒前
tao发布了新的文献求助10
13秒前
3237924531完成签到,获得积分10
13秒前
健忘小霜完成签到,获得积分10
14秒前
15秒前
scholar完成签到,获得积分10
16秒前
wei发布了新的文献求助10
16秒前
鳗鱼灵阳完成签到,获得积分20
17秒前
17秒前
18秒前
无情的聋五完成签到 ,获得积分10
18秒前
Owen应助QQiang6采纳,获得10
19秒前
19秒前
SciGPT应助wudizhuzhu233采纳,获得10
19秒前
夏天应助wudizhuzhu233采纳,获得150
19秒前
不宁不令发布了新的文献求助20
19秒前
戴佳伟彩笔完成签到,获得积分10
20秒前
20秒前
英俊的绮波完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028