M&A PREDICTIONS: RECONSIDERING THEIR VALUE, END-USERS, AND METHODOLOGIES

价值(数学) 计算机科学 数学 统计
作者
Volodymyr Verhun,Mykhailo Granchak
出处
期刊:Actual problems of international relations 卷期号: (160): 138-151
标识
DOI:10.17721/apmv.2024.160.1.138-151
摘要

The article explores market participants who may benefit from M&A predictions and how their goals may impact the requirements for M&A predictions. These participants (also called end-users of M&A predictions) are company shareholders considering selling their business, shareholders and company management considering acquiring one or a few other companies, shareholders and company management competing with potential M&A targets or buyers, and advisory firms providing investment banking services in the industries where M&A deals occur. Analyzing their goals while applying M&A predictions, the article concludes that the requirements for M&A predictions can be changed depending on these goals. These end-users may benefit from M&A predictions even if the deals they predict won’t happen. These end-users have the potential to significantly influence the outcome of the M&A events they are predicting. The M&A prediction quality criterion imposed by earlier research - the M&A prediction is correct only when a predicted M&A deal happens - can be relaxed depending on the end-users of M&A predictions and their goals. An M&A prediction will be more valuable for end-users if it includes information on both potential targets and potential buyers. M&A prediction may have a more significant value for end-users if it allows for predicting multiple counterparties for a potential party to an M&A deal. The article analyses the existing theoretical basis behind the M&A predictions and concludes that these theories are insufficient to cover all possible reasons behind the deals from the buyers’ and sellers’ perspectives – additional reasons exist that trigger M&A deals. Also, the existing theories are not always proven by the existing research, showing that their correctness may depend on the context. The article explores the current stance of M&A prediction methodologies, such as: binary state prediction models based on a linear combination of independent variables, starting from the earlier works focused on prediction variables for M&A targets to later works dedicated to adding new company-specific prediction variables of the targets and reflecting the context; alternative computational techniques to predict M&A targets, like non-parametric computational techniques, including machine learning; methodologies to predict M&A buyers; methodologies to predict pairs of buyers and targets, researching the relatedness between them. The article concludes that the M&A prediction methodology shall consider and reflect additional motivations for the M&A deal for targets and buyers and shall always include the context. Predicting only targets seems like a one-sided approach. On the contrary, predicting both parties of the deal seems like a promising prediction methodology. Non-parametric computational techniques based on a broader range of prediction variables, reflecting the motivations of the M&A deal’s parties and the context, look like a promising basic prediction methodology that should be further developed. Testing new M&A prediction methodologies within a specific sector for a longer time looks promising for increasing the robustness of the model's prediction ability. Finally, out-of-sample tests done over a longer time are necessary to check the models’ prediction ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
guangshuang发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
5秒前
xdd发布了新的文献求助10
5秒前
Ava应助大观天下采纳,获得10
6秒前
Yara.H发布了新的文献求助10
6秒前
8秒前
Dawn完成签到,获得积分10
8秒前
9秒前
清爽安南发布了新的文献求助10
9秒前
9秒前
Huang发布了新的文献求助10
9秒前
10秒前
yidemeihaoshijie完成签到 ,获得积分10
12秒前
zhuo发布了新的文献求助10
13秒前
14秒前
16秒前
大观天下完成签到,获得积分10
17秒前
Huang完成签到,获得积分10
17秒前
Roger完成签到,获得积分10
17秒前
18秒前
酸酸发布了新的文献求助10
19秒前
JamesPei应助WN采纳,获得10
20秒前
完美的念梦完成签到,获得积分10
21秒前
zl完成签到,获得积分10
21秒前
Dou完成签到,获得积分10
21秒前
22秒前
小吴要发SCI完成签到,获得积分10
22秒前
大观天下发布了新的文献求助10
22秒前
123发布了新的文献求助10
23秒前
guangshuang发布了新的文献求助10
26秒前
科研通AI5应助MAX1215采纳,获得10
26秒前
脑洞疼应助liudy采纳,获得10
29秒前
29秒前
30秒前
寒灯独夜人完成签到,获得积分20
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356