Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning

计算机科学 生成语法 人工智能 转化(遗传学) 图形 特征(语言学) 模式识别(心理学) 培训(气象学) 自然语言处理 理论计算机科学 生物化学 化学 语言学 哲学 物理 气象学 基因
作者
Wangyang Ying,Dongjie Wang,Xuanming Hu,Yuanchun Zhou,Charų C. Aggarwal,Yanjie Fu
标识
DOI:10.1145/3637528.3672015
摘要

Feature transformation is to derive a new feature set from original features to augment the AI power of data. In many science domains such as material performance screening, while feature transformation can model material formula interactions and compositions and discover performance drivers, supervised labels are collected from expensive and lengthy experiments. This issue motivates an Unsupervised Feature Transformation Learning (UFTL) problem. Prior literature, such as manual transformation, supervised feedback guided search, and PCA, either relies on domain knowledge or expensive supervised feedback, or suffers from large search space, or overlooks non-linear feature-feature interactions. UFTL imposes a major challenge on existing methods: how to design a new unsupervised paradigm that captures complex feature interactions and avoids large search space? To fill this gap, we connect graph, contrastive, and generative learning to develop a measurement-pretrain-finetune paradigm for UFTL. For unsupervised feature set utility measurement, we propose a feature value consistency preservation perspective and develop a mean discounted cumulative gain like unsupervised metric to evaluate feature set utility. For unsupervised feature set representation pretraining, we regard a feature set as a feature-feature interaction graph, and develop an unsupervised graph contrastive learning encoder to embed feature sets into vectors. For generative transformation finetuning, we regard a feature set as a feature cross sequence and feature transformation as sequential generation. We develop a deep generative feature transformation model that coordinates the pretrained feature set encoder and the gradient information extracted from a feature set utility evaluator to optimize a transformed feature generator. Finally, we conduct extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂泊完成签到,获得积分10
刚刚
JamesPei应助魔幻白柏采纳,获得10
刚刚
万能图书馆应助两仪采纳,获得10
刚刚
刚刚
tree薯要吃麦麦完成签到,获得积分10
刚刚
zw完成签到,获得积分20
1秒前
fsw发布了新的文献求助10
1秒前
菲菲呀完成签到,获得积分10
1秒前
桐桐应助怕黑晓亦采纳,获得10
1秒前
CipherSage应助举个栗子采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助cc采纳,获得10
2秒前
3秒前
彭a完成签到,获得积分10
3秒前
xixi发布了新的文献求助10
3秒前
千早爱音完成签到,获得积分10
3秒前
konka发布了新的文献求助10
3秒前
ivvi发布了新的文献求助10
4秒前
ding应助zsd采纳,获得10
4秒前
小二郎应助zsd采纳,获得10
4秒前
烟花应助zsd采纳,获得10
4秒前
彭于晏应助zsd采纳,获得10
4秒前
雨恋凡尘完成签到,获得积分0
4秒前
靓丽翠琴发布了新的文献求助20
5秒前
5秒前
实验鱼发布了新的文献求助10
5秒前
Rui发布了新的文献求助10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
5秒前
小乔应助徐仁森采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
jelifo应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721