Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning

计算机科学 生成语法 人工智能 转化(遗传学) 图形 特征(语言学) 模式识别(心理学) 培训(气象学) 自然语言处理 理论计算机科学 哲学 物理 气象学 基因 化学 生物化学 语言学
作者
Wangyang Ying,Dongjie Wang,Xuanming Hu,Yuanchun Zhou,Charų C. Aggarwal,Yanjie Fu
标识
DOI:10.1145/3637528.3672015
摘要

Feature transformation is to derive a new feature set from original features to augment the AI power of data. In many science domains such as material performance screening, while feature transformation can model material formula interactions and compositions and discover performance drivers, supervised labels are collected from expensive and lengthy experiments. This issue motivates an Unsupervised Feature Transformation Learning (UFTL) problem. Prior literature, such as manual transformation, supervised feedback guided search, and PCA, either relies on domain knowledge or expensive supervised feedback, or suffers from large search space, or overlooks non-linear feature-feature interactions. UFTL imposes a major challenge on existing methods: how to design a new unsupervised paradigm that captures complex feature interactions and avoids large search space? To fill this gap, we connect graph, contrastive, and generative learning to develop a measurement-pretrain-finetune paradigm for UFTL. For unsupervised feature set utility measurement, we propose a feature value consistency preservation perspective and develop a mean discounted cumulative gain like unsupervised metric to evaluate feature set utility. For unsupervised feature set representation pretraining, we regard a feature set as a feature-feature interaction graph, and develop an unsupervised graph contrastive learning encoder to embed feature sets into vectors. For generative transformation finetuning, we regard a feature set as a feature cross sequence and feature transformation as sequential generation. We develop a deep generative feature transformation model that coordinates the pretrained feature set encoder and the gradient information extracted from a feature set utility evaluator to optimize a transformed feature generator. Finally, we conduct extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuchen完成签到,获得积分10
刚刚
雪花飘飘完成签到,获得积分10
刚刚
song完成签到 ,获得积分10
刚刚
Lucas应助紫气东来采纳,获得30
刚刚
领导范儿应助强健的大山采纳,获得10
刚刚
白衣修身完成签到,获得积分10
1秒前
bkagyin应助怡然的涫采纳,获得10
2秒前
神勇绮烟完成签到 ,获得积分10
2秒前
nanlinhua完成签到,获得积分10
2秒前
yan发布了新的文献求助10
2秒前
鲤鱼慕晴完成签到,获得积分10
4秒前
4秒前
十一的耳朵不是特别好完成签到,获得积分10
5秒前
机灵水卉发布了新的文献求助10
5秒前
桐桐应助夕荀采纳,获得10
5秒前
自然沁完成签到,获得积分10
6秒前
6秒前
我爱学习完成签到,获得积分10
7秒前
贲孱完成签到,获得积分10
7秒前
无风之旅完成签到,获得积分10
7秒前
pio发布了新的文献求助10
7秒前
renkemaomao完成签到,获得积分10
7秒前
gaoww完成签到,获得积分10
8秒前
哈牛柚子鹿完成签到,获得积分10
8秒前
章鱼小丸子完成签到,获得积分10
8秒前
那小子真帅完成签到,获得积分10
9秒前
9秒前
方hh完成签到,获得积分10
9秒前
SaSa完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
zhuling发布了新的文献求助10
9秒前
派大星发布了新的文献求助10
9秒前
深年完成签到,获得积分10
9秒前
huangbing123完成签到 ,获得积分10
9秒前
liuye0202完成签到,获得积分10
10秒前
稳重的冰薇完成签到,获得积分10
10秒前
11秒前
顺利的冰海完成签到,获得积分10
11秒前
干净冰露完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977