Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning

计算机科学 生成语法 人工智能 转化(遗传学) 图形 特征(语言学) 模式识别(心理学) 培训(气象学) 自然语言处理 理论计算机科学 生物化学 化学 语言学 哲学 物理 气象学 基因
作者
Wangyang Ying,Dongjie Wang,Xuanming Hu,Yuanchun Zhou,Charų C. Aggarwal,Yanjie Fu
标识
DOI:10.1145/3637528.3672015
摘要

Feature transformation is to derive a new feature set from original features to augment the AI power of data. In many science domains such as material performance screening, while feature transformation can model material formula interactions and compositions and discover performance drivers, supervised labels are collected from expensive and lengthy experiments. This issue motivates an Unsupervised Feature Transformation Learning (UFTL) problem. Prior literature, such as manual transformation, supervised feedback guided search, and PCA, either relies on domain knowledge or expensive supervised feedback, or suffers from large search space, or overlooks non-linear feature-feature interactions. UFTL imposes a major challenge on existing methods: how to design a new unsupervised paradigm that captures complex feature interactions and avoids large search space? To fill this gap, we connect graph, contrastive, and generative learning to develop a measurement-pretrain-finetune paradigm for UFTL. For unsupervised feature set utility measurement, we propose a feature value consistency preservation perspective and develop a mean discounted cumulative gain like unsupervised metric to evaluate feature set utility. For unsupervised feature set representation pretraining, we regard a feature set as a feature-feature interaction graph, and develop an unsupervised graph contrastive learning encoder to embed feature sets into vectors. For generative transformation finetuning, we regard a feature set as a feature cross sequence and feature transformation as sequential generation. We develop a deep generative feature transformation model that coordinates the pretrained feature set encoder and the gradient information extracted from a feature set utility evaluator to optimize a transformed feature generator. Finally, we conduct extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花痴的夜安完成签到,获得积分10
刚刚
刚刚
奋斗冬萱发布了新的文献求助10
1秒前
好好学习完成签到,获得积分10
1秒前
2秒前
小乔应助爱喝水的酱酱采纳,获得10
2秒前
趙途嘵生发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
no_one完成签到,获得积分10
3秒前
kingwill应助往事随风采纳,获得20
4秒前
烟花应助MJJ采纳,获得10
5秒前
orixero应助curtain采纳,获得10
5秒前
loeyyu发布了新的文献求助10
5秒前
李漂亮完成签到,获得积分10
5秒前
6秒前
zz完成签到 ,获得积分10
6秒前
烟花应助靓丽雅彤采纳,获得10
6秒前
思源应助AD采纳,获得10
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
冉冉完成签到,获得积分10
8秒前
18842413391发布了新的文献求助10
8秒前
8秒前
8秒前
guozizi发布了新的文献求助50
8秒前
9秒前
研友_VZG7GZ应助元素分希怡采纳,获得10
9秒前
耍酷艳一发布了新的文献求助30
9秒前
Clown发布了新的文献求助10
10秒前
WangQ完成签到,获得积分10
10秒前
我是老大应助90无脸男采纳,获得10
10秒前
迟大猫应助zbq采纳,获得30
11秒前
11秒前
SnEBiotech完成签到,获得积分10
11秒前
LLLiu完成签到,获得积分10
12秒前
善学以致用应助HtheJ采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770