Utility of Machine Learning, Natural Language Processing, and Artificial Intelligence in Predicting Hospital Readmissions After Orthopaedic Surgery

医学 统计的 机器学习 人工智能 骨科手术 围手术期 预测建模 梅德林 接收机工作特性 物理疗法 医学物理学 统计 外科 计算机科学 内科学 政治学 法学 数学
作者
Mohamad Y. Fares,Harry H. Liu,Ana Paula Beck da Silva Etges,Yibin B. Zhang,Jon J.P. Warner,Jeffrey J. Olson,Catherine J. Fedorka,Adam Z. Khan,Matthew J. Best,Jacob M. Kirsch,Jason E. Simon,Brett Sanders,John G. Costouros,Xiaoran Zhang,P. D. Jones,D. Haas,Joseph A. Abboud
出处
期刊:Jbjs reviews [Lippincott Williams & Wilkins]
卷期号:12 (8)
标识
DOI:10.2106/jbjs.rvw.24.00075
摘要

Background: Numerous applications and strategies have been utilized to help assess the trends and patterns of readmissions after orthopaedic surgery in an attempt to extrapolate possible risk factors and causative agents. The aim of this work is to systematically summarize the available literature on the extent to which natural language processing, machine learning, and artificial intelligence (AI) can help improve the predictability of hospital readmissions after orthopaedic and spine surgeries. Methods: This is a systematic review and meta-analysis. PubMed, Embase and Google Scholar were searched, up until August 30, 2023, for studies that explore the use of AI, natural language processing, and machine learning tools for the prediction of readmission rates after orthopedic procedures. Data regarding surgery type, patient population, readmission outcomes, advanced models utilized, comparison methods, predictor sets, the inclusion of perioperative predictors, validation method, size of training and testing sample, accuracy, and receiver operating characteristics (C-statistic), among other factors, were extracted and assessed. Results: A total of 26 studies were included in our final dataset. The overall summary C-statistic showed a mean of 0.71 across all models, indicating a reasonable level of predictiveness. A total of 15 articles (57%) were attributed to the spine, making it the most commonly explored orthopaedic field in our study. When comparing accuracy of prediction models between different fields, models predicting readmissions after hip/knee arthroplasty procedures had a higher prediction accuracy (mean C-statistic = 0.79) than spine (mean C-statistic = 0.7) and shoulder (mean C-statistic = 0.67). In addition, models that used single institution data, and those that included intraoperative and/or postoperative outcomes, had a higher mean C-statistic than those utilizing other data sources, and that include only preoperative predictors. According to the Prediction model Risk of Bias Assessment Tool, the majority of the articles in our study had a high risk of bias. Conclusion: AI tools perform reasonably well in predicting readmissions after orthopaedic procedures. Future work should focus on standardizing study methodologies and designs, and improving the data analysis process, in an attempt to produce more reliable and tangible results. Level of Evidence: Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸夜阑发布了新的文献求助10
1秒前
冷静愫完成签到,获得积分10
3秒前
科研通AI5应助毅可爱采纳,获得30
4秒前
5秒前
Gnar发布了新的文献求助20
6秒前
8秒前
谦让的博完成签到,获得积分10
9秒前
10秒前
小叮当发布了新的文献求助10
11秒前
俊逸夜阑完成签到,获得积分20
11秒前
一品真意完成签到,获得积分10
12秒前
想吃芝士焗饭完成签到 ,获得积分10
12秒前
huihui发布了新的文献求助10
14秒前
头发乱了发布了新的文献求助10
14秒前
16秒前
7mi关注了科研通微信公众号
17秒前
青山老岸完成签到,获得积分10
19秒前
21秒前
朴素金毛完成签到 ,获得积分10
22秒前
隐形曼青应助猪猪hero采纳,获得10
22秒前
少7一点8完成签到,获得积分20
23秒前
小富婆发布了新的文献求助10
24秒前
欧班长完成签到 ,获得积分10
24秒前
送外卖了完成签到,获得积分10
24秒前
扶溪筠完成签到,获得积分10
25秒前
成就慕儿发布了新的文献求助10
25秒前
WindWalker完成签到 ,获得积分10
27秒前
深情安青应助向晚采纳,获得10
27秒前
28秒前
Orange应助小鹿采纳,获得10
31秒前
yoga完成签到 ,获得积分10
32秒前
32秒前
猪猪hero发布了新的文献求助10
32秒前
所所应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得30
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3713550
求助须知:如何正确求助?哪些是违规求助? 3261476
关于积分的说明 9918655
捐赠科研通 2975224
什么是DOI,文献DOI怎么找? 1631421
邀请新用户注册赠送积分活动 773943
科研通“疑难数据库(出版商)”最低求助积分说明 744587