Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers

可解释性 计算机科学 人工智能 深度学习 机器学习 稳健性(进化) 数字化病理学 分类器(UML) 生物化学 化学 基因
作者
Sergi Pons,Esther Dura,Juan Domingo,Martín Simón
出处
期刊:Computer Standards & Interfaces [Elsevier BV]
卷期号:91: 103889-103889
标识
DOI:10.1016/j.csi.2024.103889
摘要

This study contributes to the Health 4.0 paradigm by enhancing the precision of cell nuclei detection in histopathological images, a critical step in digital pathology. The presented approach is characterized by the combination of deep learning with traditional analytic classifiers. Traditional methods in histopathology rely heavily on manual inspection by expert histopathologists. While deep learning has revolutionized this process by offering rapid and accurate detections, its black-box nature often results in a lack of interpretability. This can be a significant hindrance in clinical settings where understanding the rationale behind predictions is crucial for decision-making and quality assurance. Our research addresses this gap by employing the YOLOv5 framework for initial nuclei detection, followed by an analysis phase where poorly performing cases are isolated and retrained to enhance model robustness. Furthermore, we introduce a logistic regression classifier that uses a combination of color and textural features to discriminate between satisfactorily and unsatisfactorily analyzed images. This dual approach not only improves detection accuracy but also provides insights into model performance variations, fostering a layer of interpretability absent in most deep learning applications. By integrating these advanced analytical techniques, our work aligns with the Health 4.0 initiative's goals of leveraging digital innovations to elevate healthcare quality. This study paves the way for more transparent, efficient, and reliable digital pathology practices, underscoring the potential of smart technologies in enhancing diagnostic processes within the Health 4.0 framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG64n完成签到,获得积分10
刚刚
LIUY发布了新的文献求助10
刚刚
enen发布了新的文献求助10
1秒前
1秒前
1秒前
清韵微风完成签到,获得积分10
1秒前
雨晴发布了新的文献求助10
2秒前
Jasper应助uu白采纳,获得10
3秒前
3秒前
化身孤岛的鲸完成签到 ,获得积分10
3秒前
Duha完成签到,获得积分10
4秒前
4秒前
4秒前
上上签完成签到,获得积分10
4秒前
醉熏的雁完成签到 ,获得积分10
5秒前
情怀应助Gao采纳,获得10
5秒前
NanNan626发布了新的文献求助10
5秒前
5秒前
杭紫雪完成签到,获得积分10
5秒前
Re完成签到,获得积分10
5秒前
温柔的中蓝完成签到,获得积分10
5秒前
Akim应助暴躁的小蘑菇采纳,获得10
6秒前
懒羊羊完成签到,获得积分10
6秒前
繁荣的凡双完成签到,获得积分10
6秒前
momo完成签到,获得积分10
6秒前
7秒前
科研通AI6应助笑傲江湖采纳,获得30
7秒前
量子星尘发布了新的文献求助10
7秒前
mingxuan完成签到,获得积分10
8秒前
《子非鱼》完成签到,获得积分10
8秒前
cccc完成签到,获得积分10
8秒前
浮游应助Benliu采纳,获得10
8秒前
9秒前
benbenx完成签到,获得积分10
9秒前
Loooong应助猕猴桃采纳,获得10
9秒前
希望天下0贩的0应助xie采纳,获得10
9秒前
李林鑫完成签到 ,获得积分10
9秒前
传奇3应助liu采纳,获得10
10秒前
伍小兽完成签到,获得积分10
10秒前
sunglow11完成签到,获得积分0
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778