Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers

可解释性 计算机科学 人工智能 深度学习 机器学习 稳健性(进化) 数字化病理学 分类器(UML) 生物化学 化学 基因
作者
Sergi Pons,Esther Dura,Juan Domingo,Martín Simón
出处
期刊:Computer Standards & Interfaces [Elsevier BV]
卷期号:91: 103889-103889
标识
DOI:10.1016/j.csi.2024.103889
摘要

This study contributes to the Health 4.0 paradigm by enhancing the precision of cell nuclei detection in histopathological images, a critical step in digital pathology. The presented approach is characterized by the combination of deep learning with traditional analytic classifiers. Traditional methods in histopathology rely heavily on manual inspection by expert histopathologists. While deep learning has revolutionized this process by offering rapid and accurate detections, its black-box nature often results in a lack of interpretability. This can be a significant hindrance in clinical settings where understanding the rationale behind predictions is crucial for decision-making and quality assurance. Our research addresses this gap by employing the YOLOv5 framework for initial nuclei detection, followed by an analysis phase where poorly performing cases are isolated and retrained to enhance model robustness. Furthermore, we introduce a logistic regression classifier that uses a combination of color and textural features to discriminate between satisfactorily and unsatisfactorily analyzed images. This dual approach not only improves detection accuracy but also provides insights into model performance variations, fostering a layer of interpretability absent in most deep learning applications. By integrating these advanced analytical techniques, our work aligns with the Health 4.0 initiative's goals of leveraging digital innovations to elevate healthcare quality. This study paves the way for more transparent, efficient, and reliable digital pathology practices, underscoring the potential of smart technologies in enhancing diagnostic processes within the Health 4.0 framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦丝袜完成签到,获得积分10
1秒前
2秒前
小颉江二郎完成签到,获得积分10
2秒前
小尘埃完成签到,获得积分10
2秒前
ssaws完成签到 ,获得积分10
2秒前
认真宛发布了新的文献求助10
3秒前
伶俐鸽子发布了新的文献求助10
4秒前
科学家发布了新的文献求助10
5秒前
方大完成签到 ,获得积分10
5秒前
可爱的函函应助Yola采纳,获得10
6秒前
sun发布了新的文献求助10
6秒前
tsm完成签到,获得积分10
6秒前
Parsifal完成签到,获得积分10
7秒前
香蕉觅云应助终陌采纳,获得10
7秒前
木木完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
Xiao10105830完成签到,获得积分10
9秒前
obaica完成签到,获得积分10
10秒前
10秒前
10秒前
不安的可乐完成签到,获得积分10
11秒前
iffy完成签到,获得积分10
11秒前
夜宵完成签到,获得积分10
12秒前
乐只完成签到,获得积分10
12秒前
LLL完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
嘟嘟喂嘟嘟应助朴实的杰采纳,获得10
12秒前
ccc给ccc的求助进行了留言
12秒前
冰刀完成签到,获得积分10
12秒前
mzc发布了新的文献求助10
13秒前
sunnyqqz完成签到,获得积分10
13秒前
大恩区完成签到,获得积分10
13秒前
Egoist完成签到,获得积分10
14秒前
14秒前
15秒前
LZQ921完成签到,获得积分10
15秒前
盘尼西林发布了新的文献求助10
15秒前
zkkz完成签到,获得积分10
15秒前
随风走完成签到,获得积分10
15秒前
zz发布了新的文献求助10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259