亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers

可解释性 计算机科学 人工智能 深度学习 机器学习 稳健性(进化) 数字化病理学 分类器(UML) 生物化学 化学 基因
作者
Sergi Pons,Esther Dura,Juan Domingo,Martín Simón
出处
期刊:Computer Standards & Interfaces [Elsevier]
卷期号:91: 103889-103889
标识
DOI:10.1016/j.csi.2024.103889
摘要

This study contributes to the Health 4.0 paradigm by enhancing the precision of cell nuclei detection in histopathological images, a critical step in digital pathology. The presented approach is characterized by the combination of deep learning with traditional analytic classifiers. Traditional methods in histopathology rely heavily on manual inspection by expert histopathologists. While deep learning has revolutionized this process by offering rapid and accurate detections, its black-box nature often results in a lack of interpretability. This can be a significant hindrance in clinical settings where understanding the rationale behind predictions is crucial for decision-making and quality assurance. Our research addresses this gap by employing the YOLOv5 framework for initial nuclei detection, followed by an analysis phase where poorly performing cases are isolated and retrained to enhance model robustness. Furthermore, we introduce a logistic regression classifier that uses a combination of color and textural features to discriminate between satisfactorily and unsatisfactorily analyzed images. This dual approach not only improves detection accuracy but also provides insights into model performance variations, fostering a layer of interpretability absent in most deep learning applications. By integrating these advanced analytical techniques, our work aligns with the Health 4.0 initiative's goals of leveraging digital innovations to elevate healthcare quality. This study paves the way for more transparent, efficient, and reliable digital pathology practices, underscoring the potential of smart technologies in enhancing diagnostic processes within the Health 4.0 framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助体贴鸽子采纳,获得10
2秒前
28秒前
33秒前
gumanjasmine发布了新的文献求助10
34秒前
超快乐完成签到 ,获得积分20
36秒前
体贴鸽子发布了新的文献求助10
39秒前
43秒前
46秒前
ding应助科研通管家采纳,获得10
48秒前
仁爱的雁芙完成签到,获得积分10
53秒前
dada完成签到 ,获得积分10
53秒前
54秒前
Jasper应助坚强的初夏采纳,获得10
1分钟前
1分钟前
光亮的妖妖完成签到,获得积分10
1分钟前
1分钟前
自由莆完成签到,获得积分10
1分钟前
自由莆发布了新的文献求助10
1分钟前
tylscxf完成签到,获得积分10
1分钟前
英俊的铭应助Tara鱼采纳,获得20
1分钟前
2分钟前
2分钟前
Tara鱼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Tara鱼发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
Ava应助桃子采纳,获得10
2分钟前
rnf完成签到,获得积分10
2分钟前
852应助英勇的醉蝶采纳,获得10
2分钟前
2分钟前
好好好发布了新的文献求助10
2分钟前
小马甲应助是是是采纳,获得10
2分钟前
rnf完成签到,获得积分10
2分钟前
山鸟与鱼不同路完成签到 ,获得积分10
3分钟前
英勇的醉蝶完成签到,获得积分20
3分钟前
优雅冷霜完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896