Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers

可解释性 计算机科学 人工智能 深度学习 机器学习 稳健性(进化) 数字化病理学 分类器(UML) 生物化学 化学 基因
作者
Sergi Pons,Esther Dura,Juan Domingo,Martín Simón
出处
期刊:Computer Standards & Interfaces [Elsevier BV]
卷期号:91: 103889-103889
标识
DOI:10.1016/j.csi.2024.103889
摘要

This study contributes to the Health 4.0 paradigm by enhancing the precision of cell nuclei detection in histopathological images, a critical step in digital pathology. The presented approach is characterized by the combination of deep learning with traditional analytic classifiers. Traditional methods in histopathology rely heavily on manual inspection by expert histopathologists. While deep learning has revolutionized this process by offering rapid and accurate detections, its black-box nature often results in a lack of interpretability. This can be a significant hindrance in clinical settings where understanding the rationale behind predictions is crucial for decision-making and quality assurance. Our research addresses this gap by employing the YOLOv5 framework for initial nuclei detection, followed by an analysis phase where poorly performing cases are isolated and retrained to enhance model robustness. Furthermore, we introduce a logistic regression classifier that uses a combination of color and textural features to discriminate between satisfactorily and unsatisfactorily analyzed images. This dual approach not only improves detection accuracy but also provides insights into model performance variations, fostering a layer of interpretability absent in most deep learning applications. By integrating these advanced analytical techniques, our work aligns with the Health 4.0 initiative's goals of leveraging digital innovations to elevate healthcare quality. This study paves the way for more transparent, efficient, and reliable digital pathology practices, underscoring the potential of smart technologies in enhancing diagnostic processes within the Health 4.0 framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麦克发布了新的文献求助10
1秒前
释然zc完成签到,获得积分10
1秒前
2秒前
Xiaoli完成签到,获得积分10
2秒前
嘟嘟发布了新的文献求助10
2秒前
华仔应助Gotyababy采纳,获得10
3秒前
Z可发布了新的文献求助10
3秒前
菲菲呀发布了新的文献求助10
3秒前
3秒前
西西西贝发布了新的文献求助10
4秒前
ding应助爬不起来采纳,获得10
4秒前
4秒前
星辰大海应助三水采纳,获得50
4秒前
4秒前
我爱科研发布了新的文献求助10
4秒前
5秒前
爆米花应助失眠的月光采纳,获得30
5秒前
5秒前
早中晚发布了新的文献求助30
5秒前
wanci应助尼古拉耶维奇采纳,获得10
6秒前
Hsu关闭了Hsu文献求助
6秒前
7秒前
tdtk发布了新的文献求助30
7秒前
7秒前
springlrt完成签到,获得积分10
8秒前
JayeChen完成签到,获得积分10
8秒前
释然zc发布了新的文献求助10
9秒前
俊秀的芫完成签到,获得积分10
9秒前
9秒前
cach完成签到,获得积分10
9秒前
ruochenzu发布了新的文献求助10
9秒前
麦克完成签到,获得积分10
10秒前
紫萱完成签到,获得积分10
10秒前
现实的向梦完成签到,获得积分10
10秒前
10秒前
LL发布了新的文献求助10
10秒前
Rona完成签到,获得积分10
11秒前
丸子完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871