Advancing histopathology in Health 4.0: Enhanced cell nuclei detection using deep learning and analytic classifiers

可解释性 计算机科学 人工智能 深度学习 机器学习 稳健性(进化) 数字化病理学 分类器(UML) 生物化学 化学 基因
作者
Sergi Pons,Esther Dura,Juan Domingo,Martín Simón
出处
期刊:Computer Standards & Interfaces [Elsevier]
卷期号:91: 103889-103889
标识
DOI:10.1016/j.csi.2024.103889
摘要

This study contributes to the Health 4.0 paradigm by enhancing the precision of cell nuclei detection in histopathological images, a critical step in digital pathology. The presented approach is characterized by the combination of deep learning with traditional analytic classifiers. Traditional methods in histopathology rely heavily on manual inspection by expert histopathologists. While deep learning has revolutionized this process by offering rapid and accurate detections, its black-box nature often results in a lack of interpretability. This can be a significant hindrance in clinical settings where understanding the rationale behind predictions is crucial for decision-making and quality assurance. Our research addresses this gap by employing the YOLOv5 framework for initial nuclei detection, followed by an analysis phase where poorly performing cases are isolated and retrained to enhance model robustness. Furthermore, we introduce a logistic regression classifier that uses a combination of color and textural features to discriminate between satisfactorily and unsatisfactorily analyzed images. This dual approach not only improves detection accuracy but also provides insights into model performance variations, fostering a layer of interpretability absent in most deep learning applications. By integrating these advanced analytical techniques, our work aligns with the Health 4.0 initiative's goals of leveraging digital innovations to elevate healthcare quality. This study paves the way for more transparent, efficient, and reliable digital pathology practices, underscoring the potential of smart technologies in enhancing diagnostic processes within the Health 4.0 framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独惜海发布了新的文献求助10
刚刚
buno应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
2秒前
关添应助科研通管家采纳,获得20
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
buno应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得100
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
阔达晓博完成签到,获得积分20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
buno应助科研通管家采纳,获得10
2秒前
残剑月应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
buno应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
buno应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
CipherSage应助hhhhh采纳,获得10
3秒前
3秒前
自觉的紫寒完成签到,获得积分10
4秒前
lingVing瑜完成签到 ,获得积分10
4秒前
4秒前
共享精神应助eeee采纳,获得10
5秒前
5秒前
归仔发布了新的文献求助10
6秒前
漫步海滩发布了新的文献求助10
6秒前
6秒前
慕青应助满意若灵采纳,获得10
6秒前
tier3发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
chenling完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836