Cross-sectional expected returns: new Fama–MacBeth regressions in the era of machine learning

经济 计量经济学 金融经济学 货币经济学
作者
Yufeng Han,Ai He,David E. Rapach,Guofu Zhou
出处
期刊:Review of Finance [Oxford University Press]
被引量:17
标识
DOI:10.1093/rof/rfae027
摘要

Abstract We extend the Fama–MacBeth regression framework for cross-sectional return prediction to incorporate big data and machine learning. Our extension involves a three-step procedure for generating return forecasts based on Fama–MacBeth regressions with regularization and predictor selection as well as forecast combination and encompassing. As a by-product, it provides estimates of characteristic payoffs. We also develop three performance measures for assessing cross-sectional return forecasts, including a generalization of the popular time-series out-of-sample R2 statistic to the cross section. Applying our extension to over 200 firm characteristics, our cross-sectional return forecasts significantly improve out-of-sample predictive accuracy and provide substantial economic value to investors. Overall, our results suggest that a relatively large number of characteristics matter for determining cross-sectional expected returns. Our new method is straightforward to implement and interpret, and it performs well in our application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy完成签到,获得积分10
刚刚
Akim应助Deeeppp采纳,获得10
刚刚
和平使命应助木仔采纳,获得10
1秒前
30关闭了30文献求助
1秒前
sandra发布了新的文献求助10
4秒前
4秒前
刘丰丰给刘丰丰的求助进行了留言
5秒前
李健的小迷弟应助heady采纳,获得10
6秒前
鹅1完成签到,获得积分10
7秒前
是小曹啊完成签到,获得积分10
7秒前
李半斤发布了新的文献求助10
9秒前
Akim应助akakns采纳,获得10
12秒前
赘婿应助义气尔安采纳,获得10
13秒前
嗯哼应助爱科研采纳,获得20
13秒前
科目三应助依依采纳,获得10
17秒前
21秒前
April完成签到,获得积分10
23秒前
23秒前
科目三应助阿离采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
深情安青应助灵巧墨镜采纳,获得10
24秒前
iNk应助科研通管家采纳,获得20
25秒前
membrane应助科研通管家采纳,获得10
25秒前
天天快乐应助受伤的梦曼采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得30
25秒前
iNk应助科研通管家采纳,获得20
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
iNk应助科研通管家采纳,获得20
25秒前
25秒前
akakns发布了新的文献求助10
25秒前
26秒前
27秒前
赘婿应助sandra采纳,获得10
27秒前
CHOSENONE完成签到,获得积分10
27秒前
29秒前
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304357
求助须知:如何正确求助?哪些是违规求助? 2938343
关于积分的说明 8488428
捐赠科研通 2612836
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376