Manipulation of Energy Migration in Upconversion Nanoparticles for Long-Lived Mn2+ Emission and Enhanced Singlet Molecular Oxygen Generation

光子上转换 单线态氧 分子氧 材料科学 纳米颗粒 光化学 氧气 光电子学 纳米技术 化学 发光 有机化学
作者
Zahid Ullah Khan,Latif Ullah Khan,Fernanda M. Prado,Iram Gul,Thiago Lopes,Leonardo M. A. Ribeiro,Mauro Bertotti,Magnus Gidlund,Hermi F. Brito,Paolo Di Mascio
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c04307
摘要

Nanosensitizers having long-lived upconversion emission under near-infrared (NIR) excitation offer unique advantages in terms of reduced background noise and prolonged signal detection for deep tissue therapy of cancer. Herein, we demonstrate a systematic mechanism of energy migration toward achieving long-lived Mn2+ upconversion emission in the multilayered core–shell–shell lattice of NaGdF4:Yb3+,Tm3+,Ca2+/NaGdF4:Yb3+,Ca2+/NaGdF4:Mn2+ upconversion nanoparticles (NPs), following the Yb3+ → Tm3+ → Gd3+ → Mn2+ intermetal ions energy transfer pathway. Furthermore, a rational design of nanosensitizer was achieved by incorporating Er3+ ions into the intermediate shell of multishell NPs, which was subsequently conjugated with the Rose Bengal sensitizer to enable the enhancement in singlet molecular oxygen (1O2) generation under excitation of a 980 nm NIR laser. An intense higher-energy emission in the UV–blue visible region from Tm3+ was achieved by optimizing the amount of Ca2+ in the core–shell NPs, followed by subsequent energy migration to the Mn2+ ion incorporated at the outer shell. The Mn2+ ions were strategically doped in the outer shell of NPs to leverage the catalytic activities of Mn2+ for H2O2 decomposition and decrease the backward energy transfer to the Tm3+ ion. Hence, this approach resulted in a long lifetime of Mn2+ (∼34 ms), attributed to the spin-forbidden 4T1g → 6A1g transition within 3d5 configuration. Additionally, the nanosensitizer demonstrated high 1O2 (∼0.39 μM) generation even at a very low concentration (5 μg/mL) under a laser power of 2 mW cm–2. The hydrogenase-like catalytic activities of Mn2+ exhibited significant oxygen production through decomposition of H2O2. Hence, these findings might contribute to the development of convenient multifunctional nanosensitizers for multimodal bioimaging and therapeutic features, including efficient 1O2 generation and catalytic decomposition of H2O2 (found excessively in a tumor environment) to oxygen for alleviating the hypoxia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助晨曦采纳,获得10
1秒前
0128lun发布了新的文献求助10
1秒前
phd发布了新的文献求助10
2秒前
君无名完成签到 ,获得积分10
2秒前
经年发布了新的文献求助10
2秒前
QXR完成签到,获得积分10
3秒前
豆dou完成签到,获得积分10
3秒前
Dddd发布了新的文献求助10
3秒前
HCl完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
Hollen完成签到 ,获得积分10
7秒前
慕青应助学术蠕虫采纳,获得10
8秒前
8秒前
叶子发布了新的文献求助10
9秒前
orangel完成签到,获得积分10
10秒前
半壶月色半边天完成签到 ,获得积分10
11秒前
tmpstlml发布了新的文献求助10
11秒前
12秒前
12秒前
不安饼干完成签到 ,获得积分10
14秒前
活泼的飞鸟完成签到,获得积分10
14秒前
15秒前
xuyun发布了新的文献求助10
15秒前
15秒前
zzcres完成签到,获得积分10
17秒前
eeeee完成签到 ,获得积分10
17秒前
乐观德地完成签到,获得积分10
18秒前
大个应助yf_zhu采纳,获得10
18秒前
llk发布了新的文献求助10
19秒前
一只大肥猫完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808