A Student Performance Prediction Model Based on Hierarchical Belief Rule Base with Interpretability

可解释性 计算机科学 机器学习 人工智能 过程(计算) 构造(python库) 数据挖掘 程序设计语言 操作系统
作者
Minjie Liang,Guohui Zhou,Wei He,Haobing Chen,Jidong Qian
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (14): 2296-2296
标识
DOI:10.3390/math12142296
摘要

Predicting student performance in the future is a crucial behavior prediction problem in education. By predicting student performance, educational experts can provide individualized instruction, optimize the allocation of resources, and develop educational strategies. If the prediction results are unreliable, it is difficult to earn the trust of educational experts. Therefore, prediction methods need to satisfy the requirement of interpretability. For this reason, the prediction model is constructed in this paper using belief rule base (BRB). BRB not only combines expert knowledge, but also has good interpretability. There are two problems in applying BRB to student performance prediction: first, in the modeling process, the system is too complex due to the large number of indicators involved. Secondly, the interpretability of the model can be compromised during the optimization process. To overcome these challenges, this paper introduces a hierarchical belief rule base with interpretability (HBRB-I) for student performance prediction. First, it analyzes how the HBRB-I model achieves interpretability. Then, an attribute grouping method is proposed to construct a hierarchical structure by reasonably organizing the indicators, so as to effectively reduce the complexity of the model. Finally, an objective function considering interpretability is designed and the projected covariance matrix adaptive evolution strategy (P-CMA-ES) optimization algorithm is improved. The aim is to ensure that the model remains interpretable after optimization. By conducting experiments on the student performance dataset, it is demonstrated that the proposed model performs well in terms of both accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XWS发布了新的文献求助10
1秒前
聖璕完成签到,获得积分10
1秒前
DoctorYan发布了新的文献求助10
1秒前
大个应助yaoyh_gc采纳,获得10
2秒前
orixero应助周梦蝶采纳,获得10
3秒前
3秒前
322628完成签到,获得积分10
4秒前
4秒前
情怀应助Lee采纳,获得10
4秒前
我是老大应助lvlvlvsh采纳,获得10
4秒前
5秒前
钱小二发布了新的文献求助10
5秒前
5秒前
ash发布了新的文献求助10
6秒前
Qianyun发布了新的文献求助10
7秒前
香蕉觅云应助madison采纳,获得10
8秒前
XWS完成签到,获得积分10
9秒前
Jalen完成签到,获得积分10
9秒前
十七发布了新的文献求助10
9秒前
10秒前
xia完成签到,获得积分10
10秒前
HYG发布了新的文献求助30
11秒前
小夏完成签到,获得积分10
11秒前
CipherSage应助安静访曼采纳,获得10
11秒前
tiandao发布了新的文献求助30
12秒前
123lx完成签到,获得积分10
13秒前
科研通AI2S应助开朗的蚂蚁采纳,获得10
13秒前
13秒前
13秒前
希望天下0贩的0应助清梦采纳,获得10
14秒前
魔幻的醉柳完成签到,获得积分10
14秒前
14秒前
kaixin发布了新的文献求助10
15秒前
quit完成签到,获得积分10
15秒前
杨玄完成签到,获得积分10
15秒前
16秒前
天天快乐应助嗝嗝采纳,获得10
16秒前
yaoyh_gc发布了新的文献求助10
16秒前
超级月饼完成签到,获得积分10
16秒前
一言矣完成签到 ,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557