A Student Performance Prediction Model Based on Hierarchical Belief Rule Base with Interpretability

可解释性 计算机科学 机器学习 人工智能 过程(计算) 构造(python库) 数据挖掘 程序设计语言 操作系统
作者
Minjie Liang,Guohui Zhou,Wei He,Haobing Chen,Jidong Qian
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (14): 2296-2296
标识
DOI:10.3390/math12142296
摘要

Predicting student performance in the future is a crucial behavior prediction problem in education. By predicting student performance, educational experts can provide individualized instruction, optimize the allocation of resources, and develop educational strategies. If the prediction results are unreliable, it is difficult to earn the trust of educational experts. Therefore, prediction methods need to satisfy the requirement of interpretability. For this reason, the prediction model is constructed in this paper using belief rule base (BRB). BRB not only combines expert knowledge, but also has good interpretability. There are two problems in applying BRB to student performance prediction: first, in the modeling process, the system is too complex due to the large number of indicators involved. Secondly, the interpretability of the model can be compromised during the optimization process. To overcome these challenges, this paper introduces a hierarchical belief rule base with interpretability (HBRB-I) for student performance prediction. First, it analyzes how the HBRB-I model achieves interpretability. Then, an attribute grouping method is proposed to construct a hierarchical structure by reasonably organizing the indicators, so as to effectively reduce the complexity of the model. Finally, an objective function considering interpretability is designed and the projected covariance matrix adaptive evolution strategy (P-CMA-ES) optimization algorithm is improved. The aim is to ensure that the model remains interpretable after optimization. By conducting experiments on the student performance dataset, it is demonstrated that the proposed model performs well in terms of both accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杲杲完成签到 ,获得积分10
刚刚
迷路思真发布了新的文献求助10
刚刚
昏睡的访冬完成签到,获得积分10
1秒前
1秒前
罗小马完成签到,获得积分10
2秒前
τ涛完成签到,获得积分10
3秒前
freeze完成签到,获得积分10
4秒前
孙子豪完成签到 ,获得积分10
5秒前
5秒前
鑫光熠熠完成签到 ,获得积分10
6秒前
啦啦完成签到 ,获得积分10
6秒前
星辰大海应助棉花糖采纳,获得10
7秒前
万能图书馆应助释然zc采纳,获得10
9秒前
高茵给高茵的求助进行了留言
9秒前
璐璐姐最牛逼关注了科研通微信公众号
11秒前
汀沐完成签到 ,获得积分10
13秒前
机智觅儿完成签到,获得积分10
18秒前
南淮发布了新的文献求助10
19秒前
19秒前
研友_VZG7GZ应助Wayne采纳,获得10
19秒前
22秒前
23秒前
无限达完成签到,获得积分10
23秒前
24秒前
张惠完成签到,获得积分10
24秒前
Xiaoguo发布了新的文献求助10
24秒前
25秒前
凤飞完成签到,获得积分10
25秒前
26秒前
新一发布了新的文献求助10
27秒前
28秒前
雪ノ下詩乃完成签到,获得积分10
29秒前
娜娜发布了新的文献求助10
29秒前
31秒前
神勇秋白发布了新的文献求助10
31秒前
32秒前
Xiaoguo完成签到,获得积分20
32秒前
32秒前
33秒前
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206942
求助须知:如何正确求助?哪些是违规求助? 4385146
关于积分的说明 13655821
捐赠科研通 4243590
什么是DOI,文献DOI怎么找? 2328188
邀请新用户注册赠送积分活动 1325910
关于科研通互助平台的介绍 1278098