MSLM-RF: A Spatial Feature Enhanced Random Forest for On-Board Hyperspectral Image Classification

随机森林 高光谱成像 计算机科学 特征提取 遥感 人工智能 水准点(测量) 图像分辨率 特征(语言学) 像素 能量(信号处理) 模式识别(心理学) 数学 语言学 哲学 统计 大地测量学 地理
作者
Shuai Yuan,Yanan Sun,Weifeng He,Qianrong Gu,Shi Xu,Zhigang Mao,Shikui Tu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2022.3194075
摘要

Hyperspectral imaging (HSI) greatly improves the capacity to identify and monitor ground objects due to the high spectral resolution. As the real-time remote sensing monitoring and warning tasks are getting more attention, new algorithms for low-power on-board classification are required to reduce the transmission time of satellite downlink. In this paper, we propose the Multi-Scale Local Maximum Random Forest (MSLM-RF) to significantly reduce the energy consumption while retaining high classification accuracy. The proposed MSLM-RF uses multi-scale maximum filters for spatial feature extraction and Random Forest for classification after spectral and spatial features fusion. The spatial features are efficiently extracted with low computational complexity by regarding the maximum light intensity values in different ranges of pixels as anchor points. MSLM-RF only consists of integer comparisons and a few additions, thereby eliminating the energy-hungry operations such as multiplication and exponentiation. According to experimental results on the HSI benchmark datasets, MSLM-RF delivers a better trade-off in accuracy and computational complexity than the state-of-the-art classification algorithms. Besides, MSLM-RF gets higher average classification accuracy and lower energy consumption than the previous on-board algorithms. The obtained results show the suitability of the proposed algorithm to accomplish practical real-time classification tasks on-board with low energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
番茄炒西红柿完成签到,获得积分10
1秒前
无限安蕾完成签到,获得积分10
1秒前
1秒前
飘逸蘑菇发布了新的文献求助10
2秒前
混沌完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
xg发布了新的文献求助10
4秒前
看看发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Annie完成签到,获得积分10
6秒前
6秒前
通~发布了新的文献求助30
7秒前
7秒前
雨雾发布了新的文献求助10
8秒前
daiyapeng完成签到,获得积分10
8秒前
ivy应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
36456657应助科研通管家采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794