MSLM-RF: A Spatial Feature Enhanced Random Forest for On-Board Hyperspectral Image Classification

随机森林 高光谱成像 计算机科学 特征提取 遥感 人工智能 水准点(测量) 图像分辨率 特征(语言学) 像素 能量(信号处理) 模式识别(心理学) 数学 语言学 哲学 统计 大地测量学 地理
作者
Shuai Yuan,Yanan Sun,Weifeng He,Qianrong Gu,Shi Xu,Zhigang Mao,Shikui Tu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2022.3194075
摘要

Hyperspectral imaging (HSI) greatly improves the capacity to identify and monitor ground objects due to the high spectral resolution. As the real-time remote sensing monitoring and warning tasks are getting more attention, new algorithms for low-power on-board classification are required to reduce the transmission time of satellite downlink. In this paper, we propose the Multi-Scale Local Maximum Random Forest (MSLM-RF) to significantly reduce the energy consumption while retaining high classification accuracy. The proposed MSLM-RF uses multi-scale maximum filters for spatial feature extraction and Random Forest for classification after spectral and spatial features fusion. The spatial features are efficiently extracted with low computational complexity by regarding the maximum light intensity values in different ranges of pixels as anchor points. MSLM-RF only consists of integer comparisons and a few additions, thereby eliminating the energy-hungry operations such as multiplication and exponentiation. According to experimental results on the HSI benchmark datasets, MSLM-RF delivers a better trade-off in accuracy and computational complexity than the state-of-the-art classification algorithms. Besides, MSLM-RF gets higher average classification accuracy and lower energy consumption than the previous on-board algorithms. The obtained results show the suitability of the proposed algorithm to accomplish practical real-time classification tasks on-board with low energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安静的卿完成签到,获得积分10
1秒前
CipherSage应助123采纳,获得10
1秒前
JamesPei应助小慧儿采纳,获得10
1秒前
常青发布了新的文献求助10
1秒前
1秒前
skyer完成签到,获得积分10
1秒前
搜集达人应助rlix采纳,获得10
1秒前
Lucas应助meethaha采纳,获得10
1秒前
昨夜書发布了新的文献求助10
2秒前
执着千筹完成签到,获得积分10
2秒前
3秒前
黑化小狗发布了新的文献求助10
3秒前
罗YF发布了新的文献求助10
3秒前
执着的若灵完成签到,获得积分10
3秒前
小杰完成签到 ,获得积分10
3秒前
昏睡的蟠桃应助LUKW采纳,获得150
3秒前
毛毛发布了新的文献求助10
4秒前
Pengsheng完成签到,获得积分10
4秒前
听语说发布了新的文献求助10
5秒前
费凝海完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
头发很多发布了新的文献求助10
6秒前
liuce0307发布了新的文献求助10
6秒前
白月当归完成签到,获得积分10
6秒前
lenon完成签到,获得积分10
7秒前
summer发布了新的文献求助10
7秒前
传奇3应助健壮的听寒采纳,获得10
7秒前
羞涩的渊思应助zzzz采纳,获得10
7秒前
苹果发布了新的文献求助10
8秒前
炒菜别忘记放颜完成签到 ,获得积分10
8秒前
常青完成签到,获得积分10
9秒前
9秒前
静仰星空完成签到,获得积分10
9秒前
Ghiocel完成签到,获得积分10
9秒前
物欲横流发布了新的文献求助10
9秒前
Carroe完成签到,获得积分10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650