数学
扶正器
代数闭域
不变(物理)
同构(结晶学)
置换矩阵
纯数学
可分离空间
组合数学
对称群
域代数上的
数学物理
晶体结构
循环矩阵
数学分析
化学
结晶学
作者
Changchang Xi,Jinbi Zhang
标识
DOI:10.1016/j.jalgebra.2022.06.037
摘要
For a field R of characteristic p≥0 and a matrix c in the full n×n matrix algebra Mn(R) over R, let Sn(c,R) be the centralizer algebra of c in Mn(R). We show that Sn(c,R) is a Frobenius-finite, 1-Auslander-Gorenstein, and gendo-symmetric algebra, and that the extension Sn(c,R)⊆Mn(R) is separable and Frobenius. Further, we study the isomorphism problem of invariant matrix algebras. Let σ be a permutation in the symmetric group Σn and cσ the corresponding permutation matrix in Mn(R). We give sufficient and necessary conditions for the invariant algebra Sn(cσ,R) to be semisimple. If R is an algebraically closed field, we establish a combinatoric characterization of when two semisimple invariant R-algebras are isomorphic in terms of the cycle types of permutations.
科研通智能强力驱动
Strongly Powered by AbleSci AI