扫描透射电子显微镜
扫描电子显微镜
常规透射电子显微镜
扫描共焦电子显微镜
透射电子显微镜
电子断层摄影术
电子显微镜
低压电子显微镜
材料科学
显微镜
吞吐量
能量过滤透射电子显微镜
纳米技术
生物成像
环境扫描电子显微镜
生物标本
光学
荧光
物理
计算机科学
复合材料
电信
无线
作者
Kelly Parker,Stephanie M. Ribet,Blaise R. Kimmel,Roberto dos Reis,Milan Mrksich,Vinayak P. Dravid
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2022-07-26
卷期号:23 (8): 3235-3242
被引量:7
标识
DOI:10.1021/acs.biomac.2c00323
摘要
Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.
科研通智能强力驱动
Strongly Powered by AbleSci AI