自噬
细胞生物学
程序性细胞死亡
溶酶体
蛋白质降解
线粒体
降级(电信)
癌细胞
生物
化学
细胞凋亡
生物化学
癌症
电信
计算机科学
遗传学
酶
作者
Meimei Wang,Zhenyu Yang,Yang Song,Pengfei Wei,Nestor Ishiwme,Liansheng Wang,Hao Zhang,Manman Jing,Meng Gao,Longping Wen,Yunjiao Zhang
标识
DOI:10.1016/j.actbio.2022.07.057
摘要
Close to half of human cancers harbor point mutations in the tumor-suppressor p53 gene, giving rise to the cellular accumulation of mutant p53 (mutp53) proteins with novel neomorphic gain-of-function (GOF) properties. The destruction of mutp53 proteins through either autophagic or proteasomal degradation is a viable strategy for the targeted therapy of p53-mutated cancers. Several nanomaterials, including zinc-iron and ZIF-8 nanoparticles (NPs), have been reported to induce the proteasomal degradation of mutp53 proteins. However, how autophagy, the other major cellular degradative pathway, influences NP-induced mutp53 degradation has not been investigated. This article shows that AIE-Mit-TPP, a mitochondria-targeting material with aggregation-induced emission (AIE) characteristics, elicits ubiquitination-dependent proteasomal degradation of a broad range of mutp53 proteins. Meanwhile, AIE-Mit-TPP also induces massive mitochondrial damage and autophagy. The inhibition of autophagy further increases AIE-Mit-TPP-elicited mutp53 degradation, revealing the negative impact of autophagy on AIE-Mit-TPP-induced mutp53 degradation. As expected, the degradation of mutp53 proteins by AIE-Mit-TPP abrogated mutp53-manifested GOF, leading to reductions in cell proliferation and migration and increases in cell cycle arrest and cell death. Consequently, AIE-Mit-TPP inhibited the growth of mutp53 tumors. This paper unravels the interesting interplay between the proteasomal and autophagic degradative pathways and pinpoints the modulation of autophagy as a potential strategy for optimizing NP-induced mutp53 degradation and p53-targeted cancer therapy. We have designed three different types of AIE materials: non-targeting (AIE-Br), mitochondria-targeting (AIE-Mit-TPP), lysosome-targeting (AIE-Lyso). Our results proved that mitochondria-targeting AIE material induced degradation of mutp53 proteins via the proteasome degradation pathway and abrogated mutp53-conferred GOF phenotypes. Furthermore, we performed in vitro studies on the effect of the tested materials in mutp53-expressing cancer cells and demonstrated our findings via in vivo investigations in a mouse subcutaneous p53R175H TOV112D ovarian cancer model. Our results confirmed the link between the proteasome pathway and autophagy and thus proposed a strategy of combining AIE-Mit-TPP with autophagy inhibitors for the targeted treatment of mutp53-associated tumors. Finally, we found that AIE-Mit-TPP could induce degradation of a wide-spectrum mutp53 proteins, which makes mitochondria-targeting AIE materials an effective therapeutic strategy for p53-mutated cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI