Crucial contact interface of Si@graphene anodes for high-performance Li-ion batteries

石墨烯 材料科学 阳极 复合数 电流密度 纳米技术 化学工程 光电子学 电极 化学 复合材料 工程类 物理化学 物理 量子力学
作者
Zhihua Ma,Liujie Wang,Dandan Wang,Ruohan Huang,Cunjing Wang,Gairong Chen,Chang‐Qing Miao,Yingjie Peng,Aoqi Li,Miao Yu
出处
期刊:Applied Surface Science [Elsevier]
卷期号:603: 154383-154383 被引量:9
标识
DOI:10.1016/j.apsusc.2022.154383
摘要

Despite their extremely high capacity (4200 mA h g−1), the practical application of silicon anodes is still frustrated by their poor cycling performance, resulting from severe volume changes and pulverization of the electrode material. Introducing graphene in silicon is an ideal approach for addressing these issues. Nevertheless, the large size difference between Si and graphene makes high-quality contact difficult to realize, which severely harms the electrochemical performance of Si/graphene composites. Herein, a unique [email protected] layer structure ([email protected]) with an improved contact interface is fabricated by a facile high-pressure method, in which the surfaces of silicon particles are closely covered by graphene layers, restraining the volume changes from multiple angles. The superior structure of the layered [email protected] composite exhibits multiple desired features for high-performance Si-based anodes, such as high Li+ storage capacity resulting from high-capacity Si nanoparticles, outstanding electron conductivity due to the formation of a continuous graphene conductive network, and excellent structural stability due to the enhanced protective function of graphene layers with an improved contact interface. Due to these advantages, the [email protected]40 anode, prepared under 40 MPa pressure, exhibits a significantly improved capacity of 2096.9 mA h g−1 at a current density of 300 mA g−1, an enhanced rate capability of 706.4 mA h g−1 at 3000 mA g−1, and superior cycling performance with a high capacity retention of 82.6 % after 150 cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ethan关注了科研通微信公众号
1秒前
J-R发布了新的文献求助30
1秒前
迟大猫应助多肉葡萄采纳,获得10
2秒前
2秒前
感性的霸关注了科研通微信公众号
2秒前
2秒前
stITW发布了新的文献求助10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助嘻嘻嘻采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
bkagyin应助凝子老师采纳,获得30
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
Lucas应助丹丹采纳,获得10
4秒前
Akim应助小灰熊采纳,获得10
5秒前
5秒前
长安发布了新的文献求助100
5秒前
汉堡包应助小高采纳,获得10
5秒前
5秒前
张大善人发布了新的文献求助10
6秒前
搜集达人应助勤奋的如松采纳,获得10
8秒前
miqiqi完成签到,获得积分10
8秒前
9秒前
平淡雅霜完成签到,获得积分10
9秒前
充电宝应助128采纳,获得10
10秒前
吃了吃了发布了新的文献求助10
10秒前
10秒前
科研通AI5应助张大善人采纳,获得10
11秒前
11秒前
科研通AI5应助拼搏马里奥采纳,获得30
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544136
求助须知:如何正确求助?哪些是违规求助? 3121336
关于积分的说明 9346650
捐赠科研通 2819436
什么是DOI,文献DOI怎么找? 1550205
邀请新用户注册赠送积分活动 722406
科研通“疑难数据库(出版商)”最低求助积分说明 713239