InTrans: Fast Incremental Transformer for Time Series Data Prediction

瓶颈 计算机科学 嵌入 计算 序列(生物学) 时间序列 算法 系列(地层学) 时间序列 变压器 数据挖掘 人工智能 机器学习 工程类 生物 电气工程 嵌入式系统 古生物学 电压 遗传学
作者
Savong Bou,Toshiyuki Amagasa,Hiroyuki Kitagawa
出处
期刊:Lecture Notes in Computer Science 卷期号:: 47-61 被引量:2
标识
DOI:10.1007/978-3-031-12426-6_4
摘要

Predicting time-series data is useful in many applications, such as natural disaster prevention system, weather forecast, traffic control system, etc. Time-series forecasting has been extensively studied. Many existing forecasting models tend to perform well when predicting short sequence time-series. However, their performances greatly degrade when dealing with the long one. Recently, more dedicated research has been done for this direction, and Informer is currently the most efficient predicting model. The main drawback of Informer is the inability to incrementally learn. This paper proposes an incremental Transformer, called InTrans, to address the above bottleneck by reducing the training/predicting time of Informer. The time complexities of InTrans comparing to the Informer are: (1) O(S) vs O(L) for positional and temporal embedding, (2) $$O((S+k-1)*k)$$ vs $$O(L*k)$$ for value embedding, and (3) $$O((S+k-1)*d_{dim})$$ vs $$O(L*d_{dim})$$ for the computation of Query/Key/Value, where L is the length of the input; k is the kernel size; $$d_{dim}$$ is the number of dimensions; and S is the length of the non-overlapping part of the input that is usually significantly smaller than L. Therefore, InTrans could greatly improve both training and predicting speed over the state-of-the-art model, Informer. Extensive experiments have shown that InTrans is about 26% faster than Informer for both short sequence and long sequence time-series prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
decimalpoint完成签到 ,获得积分10
2秒前
Benliu发布了新的文献求助20
2秒前
2秒前
Carol完成签到,获得积分10
2秒前
sw98318发布了新的文献求助10
3秒前
wang1090完成签到,获得积分10
3秒前
奋斗的许婷2完成签到,获得积分10
3秒前
3秒前
4秒前
hll完成签到,获得积分20
4秒前
阳yang发布了新的文献求助10
4秒前
5秒前
wang1090发布了新的文献求助30
6秒前
呜呜呜呜完成签到,获得积分10
6秒前
6秒前
Riki发布了新的文献求助10
7秒前
88发布了新的文献求助10
7秒前
8秒前
充电宝应助zfy采纳,获得10
9秒前
sak完成签到,获得积分10
10秒前
Shuo Yang发布了新的文献求助20
10秒前
呜呜呜呜发布了新的文献求助10
10秒前
在水一方应助hhzz采纳,获得10
10秒前
旧是完成签到 ,获得积分10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
杨小胖完成签到 ,获得积分10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
mm发布了新的文献求助10
12秒前
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
shouyu29应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808