A Promising Approach to Ultra‐Flexible 1 Ah Lithium–Sulfur Batteries Using Oxygen‐Functionalized Single‐Walled Carbon Nanotubes

阴极 材料科学 碳纳米管 电化学 储能 锂(药物) 化学工程 纳米技术 碳纤维 锂离子电池的纳米结构 电极 复合材料 化学 复合数 物理 工程类 内分泌学 物理化学 功率(物理) 医学 量子力学
作者
Junyoung Heo,Jeong‐Won Hong,Han Gu,Junghwan Sung,Dong Hee Kim,Jung‐Hoon Kim,Sung Kang,Youjin Lee,Hye Young Choi,Doohun Kim,Kang‐Jun Baeg,Joong Tark Han,Junwoo Park
出处
期刊:Advanced Science [Wiley]
被引量:9
标识
DOI:10.1002/advs.202406536
摘要

Abstract Lithium–sulfur (Li‐S) batteries represent a promising solution for achieving high energy densities exceeding 500 Wh kg −1 , leveraging cathode materials with theoretical energy densities up to 2600 Wh kg −1 . These batteries are also cost‐effective, abundant, and environment‐friendly. In this study, an innovative approach is proposed utilizing highly oxidized single‐walled carbon nanotubes (Ox‐SWCNTs) as a conductive fibrous scaffold and functional interlayer in sulfur cathodes and separators, respectively, to demonstrate large‐area and ultra‐flexible Li‐S batteries with enhanced energy density. The free‐standing sulfur cathodes in the Li‐S cells exhibit high energy density maintaining 806 mAh g −1 even after 100 charge‐discharge cycles. Additionally, oxygen‐containing functional groups on the SWCNTs significantly improve electrochemical performance by promoting the adsorption of lithium polysulfides. Employing Ox‐SWCNTs in both cathodes and interlayers, the study achieves high‐capacity Li‐S pouch cells that consistently deliver a capacity of 1.06 Ah and a high energy density of 909 mAh g −1 over 50 charge‐discharge cycles. This strategy not only significantly enhances the electrochemical performance of Li‐S batteries but also maintains excellent mechanical flexibility under severe deformation, positioning this Ox‐SWCNT‐based architecture as a viable, light‐weight, and ultra‐flexible energy storage solution suitable for commercializing rechargeable Li‐S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
西又木发布了新的文献求助30
刚刚
刚刚
刚刚
1秒前
1秒前
SciGPT应助XX采纳,获得10
1秒前
面向阳光完成签到,获得积分10
1秒前
1秒前
杨同学完成签到,获得积分10
2秒前
3秒前
文静灵阳发布了新的文献求助10
5秒前
大力的惠关注了科研通微信公众号
5秒前
6秒前
大力的惠关注了科研通微信公众号
6秒前
Bruial完成签到,获得积分10
6秒前
HJJHJH发布了新的文献求助10
6秒前
xt完成签到,获得积分10
6秒前
6秒前
6秒前
guovivi发布了新的文献求助10
6秒前
做不了一点科研完成签到 ,获得积分10
7秒前
耍酷含羞草完成签到,获得积分20
9秒前
wanci应助growl采纳,获得10
9秒前
10秒前
奶黄包完成签到,获得积分10
10秒前
12秒前
小蘑菇应助aaaabc采纳,获得10
13秒前
积极涵阳完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
斯文败类应助侠客采纳,获得10
16秒前
ambition发布了新的文献求助10
16秒前
17秒前
wanghao发布了新的文献求助10
18秒前
18秒前
banboo发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953