[AcidBasePred: a protein acid-base tolerance prediction platform based on deep learning].

深度学习 计算机科学 人工智能 基础(拓扑) 机器学习 数学 数学分析
作者
Rong Huang,Hejian Zhang,Min Wu,Zhiyue Men,Huanyu Chu,Jie Bai,Hong Chang,Jian Cheng,Xiaoping Liao,Yuwan Liu,Yajian Song,Huifeng Jiang
出处
期刊:PubMed 卷期号:40 (12): 4670-4681
标识
DOI:10.13345/j.cjb.240255
摘要

The structures and activities of enzymes are influenced by pH of the environment. Understanding and distinguishing the adaptation mechanisms of enzymes to extreme pH values is of great significance for elucidating the molecular mechanisms and promoting the industrial applications of enzymes. In this study, the ESM-2 protein language model was used to encode the secreted microbial proteins with the optimal performance above pH 9 and below pH 5, which yielded 47 725 high-pH protein sequences and 66 079 low-pH protein sequences, respectively. A deep learning model was constructed to identify protein acid-base tolerance based on amino acid sequences. The model showcased significantly higher accuracy than other methods, with the overall accuracy of 94.8%, precision of 91.8%, and a recall rate of 93.4% on the test set. Furthermore, we built a website (https://enzymepred.biodesign.ac.cn), which enabled users to predict the acid-base tolerance by submitting the protein sequences of enzymes. This study has accelerated the application of enzymes in various fields, including biotechnology, pharmaceuticals, and chemicals. It provides a powerful tool for the rapid screening and optimization of industrial enzymes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献求助完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
深山一静客完成签到,获得积分10
4秒前
4秒前
5秒前
Zx完成签到 ,获得积分10
6秒前
亮子完成签到,获得积分10
6秒前
十月漠北完成签到,获得积分10
6秒前
科研通AI2S应助咩了个咩采纳,获得10
7秒前
7秒前
Minue发布了新的文献求助10
8秒前
徐风年发布了新的文献求助10
9秒前
10秒前
菠萝菠萝哒应助cc采纳,获得10
11秒前
坚定的鑫完成签到,获得积分10
12秒前
CipherSage应助云仔采纳,获得10
12秒前
12秒前
硕士王完成签到,获得积分10
12秒前
晴天完成签到,获得积分10
13秒前
14秒前
big佳发布了新的文献求助10
14秒前
miniwuye发布了新的文献求助10
16秒前
楊玖日完成签到 ,获得积分10
19秒前
孤独黑猫完成签到 ,获得积分10
19秒前
老豆完成签到,获得积分10
21秒前
小蘑菇应助MOF@COF采纳,获得10
22秒前
ATLI发布了新的文献求助10
22秒前
25秒前
orixero应助内秀采纳,获得10
25秒前
劳生完成签到,获得积分10
25秒前
ZQP发布了新的文献求助10
28秒前
天天快乐应助Saluzi采纳,获得10
28秒前
28秒前
29秒前
无花果应助wang采纳,获得10
30秒前
31秒前
两院候选人应助gejingshu采纳,获得10
31秒前
土方子完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313951
求助须知:如何正确求助?哪些是违规求助? 2946315
关于积分的说明 8529594
捐赠科研通 2621967
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650738