An Enhanced Protocol to Expand Human Exposome and Machine Learning-Based Prediction for Methodology Application

暴露的 协议(科学) 计算机科学 机器学习 人工智能 数据科学 医学 环境卫生 替代医学 病理
作者
Ana He,Yiming Yao,Shijie Chen,Yongcheng Li,Nan Xiao,Hao Chen,Hongzhi Zhao,Yu Wang,Zhipeng Cheng,Hongkai Zhu,Jiaping Xu,Haining Luo,Hongwen Sun
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c09522
摘要

The human exposome remains limited due to the challenging analytical strategies used to reveal low-level endocrine-disrupting chemicals (EDCs) and their metabolites in serum and urine. This limits the integrity of the EDC exposure assessment and hinders understanding of their cumulative health effects. In this study, we propose an enhanced protocol based on multi-solid-phase extraction (multi-SPE) to expand human exposome with polar EDCs and metabolites and train a machine learning (ML) model for methodology prediction based on molecular descriptors. The protocol enhanced the measurement of 70 (25%) and 34 (12%) out of 295 well-acknowledged EDCs in serum and urine compared to the hydrophilic–lipophilic balance sorbent alone. In a nontarget analysis of serum and urine from 20 women of childbearing age in a cohort of 498, controlling occupational factors and daily behaviors for high chemical exposure potential, the multi-SPE protocol increased the measurement of 10 (40%) and 16 (53%) target EDCs and identification of 17 (77%) and 70 (36%) nontarget chemicals (confidence ≥ level 3) in serum and urine, respectively. Interestingly, the ML model predicted that the multi-SPE protocol could identify an additional 38% of the most bioactive chemicals. In conclusion, the multi-SPE protocol advances human exposome by expanding the measurement and identification of exposure profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
777发布了新的文献求助10
4秒前
笨笨中心发布了新的文献求助10
5秒前
顺心的问薇完成签到 ,获得积分10
6秒前
8秒前
9秒前
三年H发布了新的文献求助10
9秒前
Rondab应助照九州采纳,获得20
13秒前
14秒前
欧小仙完成签到,获得积分10
15秒前
三年H完成签到,获得积分10
16秒前
17秒前
大个应助竹林采纳,获得10
18秒前
立军发布了新的文献求助10
20秒前
Ava应助含糊的雨安采纳,获得10
22秒前
小蘑菇应助金不换采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
28秒前
30秒前
30秒前
30秒前
30秒前
ferny完成签到,获得积分10
31秒前
852应助刘媛媛采纳,获得10
31秒前
和平鸽完成签到 ,获得积分10
32秒前
竹林发布了新的文献求助10
34秒前
35秒前
淡定海亦发布了新的文献求助10
35秒前
jessie完成签到,获得积分10
35秒前
36秒前
37秒前
37秒前
竹林完成签到,获得积分10
38秒前
小黄完成签到,获得积分20
39秒前
金不换发布了新的文献求助10
42秒前
小黄发布了新的文献求助10
43秒前
44秒前
chen应助立军采纳,获得10
45秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309