小贩
分割
计算机科学
医学物理学
放射治疗
医学
人工智能
运营管理
工程类
业务
放射科
营销
作者
Branimir Rusanov,Martin A. Ebert,Mahsheed Sabet,Pejman Rowshanfarzad,Nathaniel Barry,Jake Kendrick,Zaid Alkhatib,Suki Gill,Joshua Dass,Nicholas Bucknell,Jeremy Croker,Colin Tang,Rohen White,Sean Bydder,Mandy Taylor,Luke Slama,Godfrey Mukwada
标识
DOI:10.1007/s13246-024-01513-x
摘要
Abstract Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating the most suitable solution. To support the clinical adoption of AI auto-segmentation systems, Selection Criteria recommendations were developed to enable a holistic evaluation of vendors, considering not only raw performance but associated risks uniquely related to the clinical deployment of AI. In-house experience and key bodies of work on ethics, standards, and best practices for AI in Radiation Oncology were reviewed to inform selection criteria and evaluation strategies. A retrospective analysis using the criteria was performed across six vendors, including a quantitative assessment using five metrics (Dice, Hausdorff Distance, Average Surface Distance, Surface Dice, Added Path Length) across 20 head and neck, 20 thoracic, and 19 male pelvis patients for AI models as of March 2023. A total of 47 selection criteria were identified across seven categories. A retrospective analysis showed that overall no vendor performed exceedingly well, with systematically poor performance in Data Security & Responsibility, Vendor Support Tools, and Transparency & Ethics. In terms of raw performance, vendors varied widely from excellent to poor. As new regulations come into force and the scope of AI auto-segmentation systems adapt to clinical needs, continued interest in ensuring safe, fair, and transparent AI will persist. The selection and evaluation framework provided herein aims to promote user confidence by exploring the breadth of clinically relevant factors to support informed decision-making.
科研通智能强力驱动
Strongly Powered by AbleSci AI