Achieving Highly Reversible Mn2+/MnO2 Conversion Reaction in Electrolytic Zn‐MnO2 Batteries via Electrochemical‐Chemical Process Regulation

电化学 电解质 化学 无机化学 过程(计算) 组合化学 电极 物理化学 计算机科学 操作系统
作者
Hengyue Chen,Pengchao Ruan,Hao Zhang,Zeinhom M. El‐Bahy,Mohamed M. Ibrahim,Bingan Lu,Jiang Zhou
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202423999
摘要

Despite the widespread interest in electrolytic Zn‐MnO2 batteries with excellent output voltage and high theoretical capacity, the spontaneous disproportionation reaction of free Mn3+ along with the disorderly deposited inactive MnO2 results in the low Mn2+/MnO2 conversion reversibility, which seriously affects their cycling stability. Here, we propose a novel aqueous SiO2 colloidal electrolyte with FeSO4 mediator (denoted as SF electrolyte) based on a bidirectional electrochemical‐chemical model to achieve dual regulation of the MnO2 deposition/dissolution process. During the charging process, the SiO2 colloidal particles located at the carbon felt interface and the electrolyte bulk phase simultaneously provide sufficient disproportionation sites for the diffused Mn3+ to guide the orderly rapid deposition of MnO2. Meanwhile, the introduction of Fe2+ mediators during the discharge process can sufficiently react with MnO2 on the SiO2 particles in the electrolyte, thereby further enabling the efficient conversion of Mn2+/MnO2. Consequently, electrolytic Zn‐MnO2 battery with SF electrolyte can stably run for 550 cycles at 10 mA h cm‐2 and achieve superior reversibility at a high area capacity of 20 mA h cm‐2. This work demonstrates the feasibility of colloidal electrolytes in modulating electrochemical‐chemical processes to stabilize electrolytic Zn‐MnO2 batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海盗完成签到,获得积分10
刚刚
不安青牛应助干净秋寒采纳,获得10
刚刚
刚刚
bill完成签到,获得积分10
刚刚
tong完成签到,获得积分10
刚刚
板栗完成签到,获得积分10
1秒前
2秒前
xixi完成签到,获得积分20
2秒前
情怀应助polarisier采纳,获得10
3秒前
4秒前
怡然的幻灵完成签到,获得积分10
4秒前
4秒前
tongziye发布了新的文献求助30
4秒前
rajvsvj发布了新的文献求助10
4秒前
田様应助wsqg123采纳,获得10
5秒前
star应助小巧的中道采纳,获得160
5秒前
一期一会发布了新的文献求助10
5秒前
五音不全汪完成签到 ,获得积分10
5秒前
pig120完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助ccc采纳,获得10
6秒前
7秒前
科研的橘子完成签到,获得积分10
7秒前
快乐梦安完成签到 ,获得积分10
7秒前
qq1471895714完成签到,获得积分10
7秒前
思源应助顺利的乐枫采纳,获得10
8秒前
8秒前
畅快的鸡翅完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
水杯没水了关注了科研通微信公众号
10秒前
丘比特应助聪慧的白猫采纳,获得10
10秒前
Jasper应助Purplesky采纳,获得10
10秒前
10秒前
闪闪的鹏博完成签到,获得积分10
11秒前
11秒前
zhengguibin发布了新的文献求助10
11秒前
12秒前
兴奋赛君发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939204
求助须知:如何正确求助?哪些是违规求助? 4205734
关于积分的说明 13071023
捐赠科研通 3983950
什么是DOI,文献DOI怎么找? 2181431
邀请新用户注册赠送积分活动 1197285
关于科研通互助平台的介绍 1109458