Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts

过氧化氢 燃料电池 催化作用 电化学 化学 电化学电池 纳米技术 化学工程 材料科学 电极 工程类 有机化学 物理化学
作者
Yunong Zhang,Yuxin Liu,Andreas Offenhäusser,Yulia Mourzina
出处
期刊:Biosensors [MDPI AG]
卷期号:15 (2): 124-124
标识
DOI:10.3390/bios15020124
摘要

The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical reactions, directly generating an analytical signal. Unlike conventional (amperometric, voltammetric, and impedimetric) sensors, no external energy in the form of an applied potential is required for the redox detection reactions to occur. SPESs therefore have several important advantages over conventional electrochemical sensors. They do not require a power supply and modulation system, which saves energy and costs. The devices also offer greater simplicity and are therefore more compatible for applications in wearable sensor devices as well as in vivo and in situ use. Due to the dual redox properties of hydrogen peroxide, it is possible to develop membraneless fuel cells and fuel-cell-based hydrogen peroxide SPESs, in which hydrogen peroxide in the analyzed sample is used as the only source of energy, as both an oxidant and a reductant (fuel). This also suppresses the dependence of the devices on the availability of oxygen. Electrode catalyst materials for different hydrogen peroxide reaction pathways at the cathode and the anode in a one-compartment cell are a key technology for the implementation and characteristics of hydrogen peroxide SPESs. This article provides an overview of the operating principle and designs of H2O2-H2O2 fuel cells and H2O2 fuel-cell-based SPESs, focusing on biomimetic and nanozyme catalysts, and highlights recent innovations and prospects of hydrogen-peroxide-based SPESs for (bio)electrochemical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云母完成签到 ,获得积分10
刚刚
xdd0924完成签到,获得积分20
刚刚
善良冷雁应助felix采纳,获得10
刚刚
科研通AI5应助xiaosu采纳,获得30
1秒前
借一颗糖完成签到 ,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
CodeCraft应助jdsfyr采纳,获得10
5秒前
Zinc完成签到,获得积分0
5秒前
方便面条子完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
SciGPT应助老实乌冬面采纳,获得10
8秒前
8秒前
小黄好运百分百完成签到 ,获得积分10
8秒前
文天发布了新的文献求助10
8秒前
9秒前
wZx完成签到,获得积分20
9秒前
11秒前
11秒前
FashionBoy应助mwiyi采纳,获得10
12秒前
AlinaLee应助王玄琳采纳,获得10
13秒前
杰尼龟完成签到,获得积分10
13秒前
NexusExplorer应助真实的初阳采纳,获得10
14秒前
曲聋五发布了新的文献求助10
14秒前
Jasper应助安静凡旋采纳,获得10
14秒前
Lawrence发布了新的文献求助10
14秒前
Hello应助阿辉采纳,获得10
15秒前
15秒前
一只呆发布了新的文献求助10
16秒前
16秒前
punker发布了新的文献求助10
17秒前
17秒前
wangxin关注了科研通微信公众号
17秒前
17秒前
jdsfyr发布了新的文献求助10
17秒前
Owen应助酷酷觅夏采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560954
求助须知:如何正确求助?哪些是违规求助? 3134721
关于积分的说明 9409376
捐赠科研通 2834952
什么是DOI,文献DOI怎么找? 1558345
邀请新用户注册赠送积分活动 728095
科研通“疑难数据库(出版商)”最低求助积分说明 716686