More than meets the eye: predicting adrenocortical carcinoma outcomes with pathomics

列线图 医学 肾上腺皮质癌 队列 一致性 内科学 危险系数 比例危险模型 肿瘤科 恶性肿瘤 回顾性队列研究 肾上腺切除术 置信区间
作者
Jianqiu Kong,Mingli Luo,Yi Huang,Ying Lin,Kaiwen Tan,Yitong Zou,Juanjuan Yong,Sha Fu,Shao‐Ling Zhang,Xinxiang Fan,Tianxin Lin
出处
期刊:European journal of endocrinology [Bioscientifica]
卷期号:192 (1): 61-72
标识
DOI:10.1093/ejendo/lvae162
摘要

Abstract Background Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy with high recurrence rates and poor prognosis. Current prognostic models are inadequate, highlighting the need for innovative diagnostic tools. Pathomics, which utilizes computer algorithms to analyze whole-slide images, offers a promising approach to enhance prognostic models for ACC. Methods A retrospective cohort of 159 patients who underwent radical adrenalectomy between 2002 and 2019 was analyzed. Patients were divided into training (N = 111) and validation (N = 48) cohorts. Pathomics features were extracted using an unsupervised segmentation method. A pathomics signature (PSACC) was developed through LASSO-Cox regression, incorporating 5 specific pathomics features. Results The PSACC showed a strong correlation with ACC prognosis. In the training cohort, the hazard ratio was 3.380 (95% CI, 1.687-6.772, P < .001), and in the validation cohort, it was 3.904 (95% CI, 1.039-14.669, P < .001). A comprehensive nomogram integrating PSACC and M stage significantly outperformed the conventional clinicopathological model in prediction accuracy, with concordance indexes of 0.779 versus 0.668 in the training cohort (P = .002) and 0.752 versus 0.603 in the validation cohort (P = .003). Conclusions The development of a pathomics-based nomogram for ACC presents a superior prognostic tool, enhancing personalized clinical decision making. This study highlights the potential of pathomics in refining prognostic models for complex malignancies like ACC, with implications for improving prognosis prediction and guiding treatment strategies in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源莫莫发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助一颗肉丸采纳,获得10
2秒前
3秒前
4秒前
孟怀笙完成签到 ,获得积分10
5秒前
怡然念之完成签到 ,获得积分10
6秒前
7秒前
7秒前
小宋应助独特紫翠采纳,获得30
7秒前
星辰大海应助独特紫翠采纳,获得10
7秒前
端庄不斜发布了新的文献求助20
7秒前
Mardan发布了新的文献求助10
7秒前
11秒前
Akim应助ANNE采纳,获得10
11秒前
Akim应助眯眯眼的电脑采纳,获得10
12秒前
吴可之发布了新的文献求助10
13秒前
zjq完成签到 ,获得积分10
13秒前
直率的鸿完成签到,获得积分10
14秒前
15秒前
小笛子1996发布了新的文献求助10
16秒前
17秒前
19秒前
20秒前
20秒前
老陈发布了新的文献求助10
21秒前
ANNE发布了新的文献求助10
25秒前
活泼的踏歌完成签到,获得积分10
26秒前
共享精神应助务实雁梅采纳,获得30
27秒前
上官若男应助机智的嘎采纳,获得10
28秒前
棉花糖吖吖吖完成签到 ,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
爱静静应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助跳舞的梵谷采纳,获得10
31秒前
大布丁应助米共采纳,获得10
31秒前
文艺的夜梦关注了科研通微信公众号
33秒前
33秒前
耿耿发布了新的文献求助10
34秒前
35秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384006
求助须知:如何正确求助?哪些是违规求助? 2998016
关于积分的说明 8777444
捐赠科研通 2683604
什么是DOI,文献DOI怎么找? 1469829
科研通“疑难数据库(出版商)”最低求助积分说明 679553
邀请新用户注册赠送积分活动 671837