创造力
讲故事
流利
独创性
创意技巧
机器人
心理学
计算机科学
背景(考古学)
社交机器人
社会心理学
人工智能
数学教育
叙述的
移动机器人
语言学
哲学
古生物学
机器人控制
生物
作者
Maha Elgarf,Hanan Salam,Christopher Peters
标识
DOI:10.3389/frobt.2024.1457429
摘要
Creativity is an important skill that is known to plummet in children when they start school education that limits their freedom of expression and their imagination. On the other hand, research has shown that integrating social robots into educational settings has the potential to maximize children’s learning outcomes. Therefore, our aim in this work was to investigate stimulating children’s creativity through child-robot interactions. We fine-tuned a Large Language Model (LLM) to exhibit creative behavior and non-creative behavior in a robot and conducted two studies with children to evaluate the viability of our methods in fostering children’s creativity skills. We evaluated creativity in terms of four metrics: fluency, flexibility, elaboration, and originality. We first conducted a study as a storytelling interaction between a child and a wizard-ed social robot in one of two conditions: creative versus non-creative with 38 children. We investigated whether interacting with a creative social robot will elicit more creativity from children. However, we did not find a significant effect of the robot’s creativity on children’s creative abilities. Second, in an attempt to increase the possibility for the robot to have an impact on children’s creativity and to increase the fluidity of the interaction, we produced two models that allow a social agent to autonomously engage with a human in a storytelling context in a creative manner and a non-creative manner respectively. Finally, we conducted another study to evaluate our models by deploying them on a social robot and evaluating them with 103 children. Our results show that children who interacted with the creative autonomous robot were more creative than children who interacted with the non-creative autonomous robot in terms of the fluency, the flexibility, and the elaboration aspects of creativity. The results highlight the difference in children’s learning performance when inetracting with a robot operated at different autonomy levels (Wizard of Oz versus autonoumous). Furthermore, they emphasize on the impact of designing adequate robot’s behaviors on children’s corresponding learning gains in child-robot interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI